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Abstract - Network Intrusion Detection Systems (NIDS) are enhanced and updated consistently, but at the same the, network 

intruders and hackers are also modernizing and renovating their methodologies. Hence, it is very important to develop novel 

Intrusion Detection Systems which is constructive to deal with heterogeneous network attacks. Recent research indicates that 

the Intrusion Detection Systems powered by Machine Learning techniques are capable of curbing these issues up to a great 

extent but still, there is a long way to go. There are several distinguished models and algorithms exist which are capable of 

detecting network attacks. Most of the existing research is focused on building a robust system against common and prevalent 

network attack categories. These approaches do not extend to some peculiar and menacing network attacks, which are often 

encrypted to spoof the Intrusion Detection Systems. Hence, we have proposed an effective Decision Tree Model which is 

capable of detecting such attacks with nearly 100% accuracy. We have also investigated and presented a comparative study 

of more than 10 machine learning models using one of the latest datasets, the HIKARI-2021 [1] dataset. Moreover, the existing 

research work, particularly dealing with encrypted attacks, does not explicitly indicate the detection accuracy of the encrypted 

network attack category. Hence, we have also worked on individual network attack categories for various machine-learning 

approaches. 

Keywords - Encrypted Network Attack, Network Intrusion Detection System (NIDS), Decision Tree Algorithm, Machine 

Learning, Cyber Security. 

1. Introduction  
A Network Intrusion Detection System (NIDS) is a 

security mechanism that observes and analyses the traffic 

flowing through a network for any indications of 

unauthorized or harmful activity. By scrutinizing the network 

packets, NIDS can recognize patterns or actions that may 

suggest a security breach. NIDS is designed to recognize and 

prevent unauthorized entry, data breaches, malware attacks, 

and other forms of cyber-attacks that could potentially 

compromise the network and its assets. In Sekar et al.’s [2] 

research paper, they indicate that an efficient NIDS must 

have the capacity to detect various types of attacks with a 

high degree of accuracy in real time while minimizing false 

positives. Furthermore, the system should be scalable and 

able to manage high volumes of network traffic. Shun and 

Malki [3] propose a unique method which uses neural 

networks to boost the NIDS’s accuracy and speed. 

Meanwhile, Sultana et al. [4] recommend machine learning 

techniques in SDN-based NIDS to improve its ability to 

detect and react to network threats. Moreover, a well-

designed NIDS should have the ability to detect an extensive 

range of attacks, reduce false positives, scale well, and 

incorporate advanced technologies such as neural networks 

and machine learning to enhance its performance.  

 

Machine learning has a crucial role in improving the 

efficacy of NIDS. Sinclair et al. [5] demonstrate an early 

example of applying machine learning techniques to NIDS 

through a Decision Tree algorithm used to identify network 

connections and classify them based on their behavior. 

Supervised machine learning algorithms have become 

increasingly popular in recent years for NIDS, with Taher et 

al. [6] using a supervised machine learning algorithm with 

feature selection to enhance the accuracy of NIDS. The 

https://www.ijpttjournal.org/archives/ijptt-v11i2p404
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authors used a mutual information-based approach to select 

the most relevant features and then applied a Random Forest 

classifier to classify network traffic. Furthermore, Sommer 

and Paxson [7] proposed using unsupervised machine-

learning techniques to detect network anomalies. The authors 

suggested that unsupervised machine learning algorithms 

could overcome the limitations of signature-based detection 

methods. In conclusion, machine learning in NIDS has the 

potential to improve intrusion detection accuracy efficiency 

and provide better protection against evolving network 

threats.  

 

Encrypted network attacks involve the use of encryption 

to hide malicious activities in network traffic, making them 

challenging to detect and prevent. As noted in Al-Hababi and 

Tokgoz’s [8] research paper, these attacks are often carried 

out using man-in-the-middle techniques, which involve 

intercepting and altering network traffic. These attacks are 

difficult to detect due to their use of encryption to conceal 

payloads, obfuscation of network traffic patterns, and the 

need to analyze large volumes of encrypted traffic in real 

time. To address these challenges, researchers have proposed 

using machine learning algorithms for encrypted network 

traffic analysis. For instance, Conti et al. [9] developed a 

machine learning-based framework for analysing Android 

encrypted network traffic to identify user actions. Shen et al. 

[10] conducted a comprehensive survey of machine learning-

powered encrypted network traffic analysis, which identified 

the benefits and limitations of different techniques and 

suggested avenues for future research. 

 

2. Related Work 

The authors in [11] proposed a new approach introduced 

for network anomaly intrusion detection by utilizing a Dual 

Intrusion Detection System (Dual-IDS) that combines the 

outputs jof two machine learning models. The first model 

uses Gradient Boosting Decision Trees (GBDT) trained on 

raw network packet data. In contrast, the second model 

employs a bagging ensemble of GBDT models trained on 

statistical features extracted from the packet data. The authors 

propose that their Dual-IDS approach can offer better 

accuracy and robustness than individual models, particularly 

when confronted with adversarial attacks. To evaluate the 

performance of their proposed model, the authors used the 

Hikari-2021 [1] dataset. The proposed model achieved an 

accuracy, precision, recall, and F1-score of 99.91%. 

  

There are various limitations of the proposed model in 

detecting the Hikari-2021 dataset classification. The model 

focuses mainly on binary classification, which categorizes 

normal and attack data only. However, the Hikari-2021 

dataset comprises various types of attacks, and this limitation 

may affect the model’s accuracy and effectiveness in 

detecting different types of attacks. Secondly, the proposed 

model uses feature selection techniques that may not be 

optimal for the Hikari-2021 dataset’s encrypted traffic data. 

As a result, the model may not extract relevant features from 

the encrypted data, leading to reduced accuracy. Also, the 

model’s performance may be impacted by the dataset’s 

imbalance, with certain attack types being significantly 

underrepresented.  

 
The other prominent work is done in [12], where the 

authors analyzed the performance of various machine 

learning algorithms in detecting network intrusions using the 

HIKARI- 2021 dataset. According to the study [12], the 

Random Forest algorithm exhibited superior performance in 

terms of accuracy, precision, and F1-score for detecting 

attacks when compared to other algorithms, including the K-

Nearest Neighbors Algorithm, Multilayer perceptron and 

Support Vector Machine. Interestingly, the study discovered 

that utilizing all 86 features in the dataset did not necessarily 

result in optimal performance. Instead, feature selection 

techniques were found to be beneficial in reducing the 

number of features while maintaining high detection 

accuracy. Additionally, the study revealed that the 

algorithm’s performance varied depending on the type of 

attack, with certain algorithms proving more effective for 

specific types of attacks than others. The authors emphasized 

the importance of using feature selection techniques and 

selecting appropriate machine learning algorithms for 

different types of attacks to achieve optimal detection 

accuracy.  

 
However, the study [12] focused solely on the 

performance of four machine learning algorithms, which may 

not provide a comprehensive representation of all available 

algorithms. Moreover, the study failed to investigate the 

potential impact of varying hyperparameters on the 

performance of each algorithm or to examine their 

interpretability. Interpretability is crucial in understanding 

how algorithms arrive at their predictions and enhancing 

transparency and trustworthiness. Additionally, the study 

neglected to examine the influence of different preprocessing 

techniques on the algorithm’s performance.  

 
The current research on detecting network attacks in the 

Hikari-2021 dataset has certain limitations, highlighting the 

need for a new approach. Decision Tree models are a 

promising solution due to their effectiveness in other 

anomaly detection applications. These models can handle 

large feature sets, making them suitable for comprehensive 

network traffic analysis. Additionally, they can detect 

patterns across multiple layers of network traffic, which is 

particularly useful for complex attacks. Moreover, Decision 

Tree models can handle both static and dynamic data, 

including encrypted traffic, further enhancing their ability to 

detect anomalies. A Decision Tree-based IDS approach can 

potentially address the limitations of existing studies and 

provide a more comprehensive and accurate detection of 

network attacks in the Hikari-2021 dataset. 
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3. HIKARI-2021 Dataset 
The Hikari-2021 dataset consists of two parts: real 

network traffic and synthetic encrypted traffic, each having a 

specific function in the area of network intrusion detection. 

The real traffic data were obtained from the Japan Coast 

Guard network during their regular maritime patrol, resulting 

in roughly 3 million network packets captured in a month. On 

the other hand, the synthetic encrypted traffic was produced 

using the BotNET simulation tool, resulting in almost 1 

million network packets. Both datasets are annotated with 

information regarding the type of attack, such as DDoS, brute 

force, and SQL injection attacks, that is either simulated or 

observed. The dataset is publicly accessible and can be used 

for designing and assessing intrusion detection systems, 

particularly those with the ability to handle encrypted traffic.  
 

The Hikari-2021 dataset offers several advantages over 

existing network intrusion detection datasets. Firstly, it 

combines real and synthetic encrypted traffic data, providing 

a more precise representation of actual network traffic. This 

is in contrast to other datasets that rely solely on synthetic 

data, which may not accurately capture the complexity and 

diversity of real-world network traffic. Secondly, the dataset 

is labeled with attack information, making it easier to 

evaluate intrusion detection systems and refine them 

accordingly. Thirdly, it is publicly available, promoting 

transparency and encouraging collaboration among 

researchers and developers. Lastly, the Hikari-2021 dataset is 

specifically designed for encrypted traffic, a vital feature 

given the increasing prevalence of encryption in modern 

networks. Overall, the Hikari-2021 dataset is a 

comprehensive, representative, and specifically designed 

intrusion detection dataset with labeled information, which 

can assist in the development of more accurate and effective 

intrusion detection systems.  
 

KDD99 [13] has the highest number of records, followed 

by UNSW-NB15 [14], CICIDS-2017 [15], and Hikari-2021. 

However, Hikari-2021 has the highest number of features 

among the four datasets. KDD99 and UNSW-NB15 focus on 

intrusion detection for networks, while CICIDS-2017 is 

designed for detecting intrusions in industrial control 

systems, and Hikari-2021 is specifically designed for 

encrypted traffic. KDD99 and UNSW-NB15 have 

imbalanced datasets, while CICIDS-2017 and Hikari-2021 

have more balanced datasets.  
 

All four datasets have labeled data, but Hikari-2021 and 

CICIDS-2017 provide more detailed labeling information. 

Hikari-2021 is the only dataset that includes both real and 

synthetic data for a more accurate representation of real-

world network traffic, while the other datasets rely solely on 

synthetic data. In summary, each dataset has its own strengths 

and weaknesses, but Hikari-2021 is exceptional for its 

detailed labeling information, the combination of real and 

synthetic data, and comprehensive representation of 

encrypted network traffic.  

The Hikari-2021 dataset includes various classifications 

of network traffic for assessing the effectiveness of intrusion 

detection systems. The ”Background” classification includes 

ordinary network traffic, such as browsing and emailing, that 

is not associated with any malicious activity. The ”Benign” 

classification consists of non-threatening traffic, such as 

traffic related to software updates and network management. 

The ”Bruteforce” classification involves traffic linked to 

brute-force attacks, where an attacker tries to gain access to a 

system by guessing passwords. The ”Bruteforce-XML” 

classification specifically targets XML-based services and 

may involve traffic related to XML injection attacks or other 

forms of XML-based attacks. The ”Probing” classification 

pertains to traffic linked to reconnaissance or probing 

activities where an attacker attempts to gather information 

about a target network or system. The ”XMRIGCC Crypto 

Miner” classification is associated with network traffic 

related to the XMRIGCC cryptocurrency miner, a type of 

malware that mines cryptocurrency using a victim’s 

computer. By utilizing a diverse set of traffic types, the 

Hikari-2021 dataset offers a more inclusive and 

representative dataset for testing intrusion detection systems.  

 

The dataset Hikari-2021 encompasses 86 characteristics 

that aid in developing intrusion detection systems and 

represent network traffic data. These features can be broadly 

classified into different groups, including statistical features 

(e.g., standard deviation of packet length, mean packet 

length, etc.), general network traffic features (e.g., number of 

packets, packet length, etc.), and protocol-specific features 

(e.g., DNS query type, HTTP request method, etc.). Some 

specific features of the dataset are the total bytes and packets 

in a flow, the ratio of incoming to outgoing packets, the 

protocol of the flow, the DNS query type, the HTTP request 

method, and many more. With this comprehensive set of data 

points, intrusion detection systems can be trained and 

assessed, and network security measures’ accuracy and 

effectiveness can be improved. 

 

4. Proposed Decision Tree Model 
A Decision Tree [16] is a structured model that follows 

a hierarchical arrangement comprising nodes and edges. 

Nodes in the tree represent evaluations of specific attributes 

of objects being classified, and edges indicate the potential 

outcomes of those evaluations. Each internal node in the tree 

corresponds to a decision point about an attribute, while each 

leaf node represents a class or probability distribution for that 

class. The decision-making process begins at the top of the 

tree (root node) and continues downwards until a leaf node is 

reached. At this point, the object being classified is given a 

class label. The process of constructing a Decision Tree 

involves creating a tree from a set of training examples that 

optimally divides the data into homogeneous regions based 

on attribute values. Decision Trees are non-parametric 

models since they do not require any prior assumptions about 

the data distribution or the functional form of the decision 
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boundary. Decision Trees [17] are popular due to their 

interpretability, ease of use, and high accuracy. Decision 

Trees can handle both categorical and continuous data and 

can be used for both classification and regression tasks. They 

are non-parametric models, meaning they do not require any 

prior assumptions about the data distribution or decision 

boundary. Additionally, Decision Trees can handle missing 

values and are resistant to outliers.  

 

In our approach, the Decision Tree model begins by 

encoding the categorical variable ’Traffic Category’ using 

LabelEncoder and then splits the data into train and test sets, 

with a test size of 0.25 and a random state of 42. The training 

data has 416458 observations, while the test data has 138820 

observations. This Decision Tree model was created using the 

Decision Tree Classifier from the scikit-learn library. The 

maximum depth of the Decision Tree was controlled by 

setting the max depth parameter to 3. To ensure the 

reproducibility of the results, the random state parameter was 

set to 42, which set the random seed. 

 

The model was trained on the train data using the fit 

function, and then predictions were generated on the test data 

using the predict function. These predictions were used to 

evaluate the performance of the Decision Tree model on the 

test data.  

 
Fig. 1 Total Impurity vs Alpha for Training Set Effective Decision Tree 

(Our Approach) 

 
Fig. 2 Decreasing Trend of Alpha hyperparameter of Effective 

Decision Tree (Our Approach) 

 
Fig. 3 Accuracy vs Alpha for Testing set of Effective Decision Tree 

(Our Approach) 

The Decision Tree model comprises several parameters, 

each with its own specific role. These parameters were 

carefully set to ensure optimal performance of the model. The 

alpha parameter controls the complexity of the Decision Tree 

by setting the minimum value of cost-complexity pruning. In 

this model, the value is set to 0.0, indicating that no pruning 

is applied. The class weight parameter adjusts the weights of 

the classes in the dataset to balance the impact of the classes 

with fewer instances. The criterion parameter determines the 

function to measure the quality of the split, which in this 

model is set to gini. The max depth parameter controls the 

maximum depth of the Decision Tree and is set to 3, while 

the max features parameter controls the number of features to 

consider and is set to None. 

 

The max-leaf nodes parameter controls the maximum 

number of leaf nodes that the Decision Tree can have and is 

set to None. The min impurity decrease parameter sets the 

minimum threshold for the impurity decrease of a node to 

split and is set to 0.0. The min samples leaf parameter sets the 

minimum number of samples required to be at a leaf node and 

is set to 1, while the min samples split parameter sets the 

minimum number of samples required to split an internal 

node and is set to 2. The min weight fraction leaf parameter 

sets the minimum fraction of the sum total of weights 

required to be at a leaf node and is set to 0.0. The random 

state parameter sets the random seed for the Decision Tree, 

ensuring reproducibility of the results. In contrast, the splitter 

parameter determines the strategy to choose the split at each 

node and is set to best. By using the above parameters in the 

Decision Tree model, the most optimal results were achieved 

compared to other hyperparameter tuning techniques. 

 

 

The Decision Tree structure consists of 11 nodes, each 

representing a specific condition or action. The tree starts at 

node 0, which is a split node with two possible paths. If the 

condition X[:, 0] <= 181179.5 is true, the tree goes to node 1; 

otherwise, it goes to node 6. Node 1 is another split node, and 

depending on the condition X[:, 0] <= 11028.5, it goes to 
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either node 2 or node 5. Similarly, node 2 is also a split node, 

and based on the condition X[:, 0] <= 5144.0, it goes to node 

3 or node 4. Nodes 3 and 4 are leaf nodes representing a final 

outcome or decision. 

 

Similarly, node 5 is also a leaf node. Node 6 is another 

split node, and based on the condition X[:, 0] <= 528610.5, it 

goes to node 7 or node 8. Node 7 is a leaf node, and node 8 is 

another split node with two possible paths based on the 

condition X[:, 33] <= 13.8023. Finally, nodes 9 and 10 are 

leaf nodes representing the final outcome or decision. The 

Decision Tree algorithm utilizes the Gini index to minimize 

impurity while recursively searching for the optimal feature 

and threshold values that split the data into two subsets. The 

algorithm selects the feature and threshold values that can 

achieve maximum reduction in the Gini index by trying all 

possible combinations. For instance, node 0 uses the first 

feature (X[:, 0]) as the splitting criterion and has a threshold 

value of 181179.5. Nodes 1, 2, and 6 also use the first feature 

but have different threshold values of 11028.5, 5144.0, and 

528610.5, respectively. Node 9, on the other hand, splits the 

data based on the 34th feature (X[:, 33]) and has a threshold 

value of 13.8023. The Decision Tree algorithm continues to 

recursively split the child nodes using the same process until 

it reaches the maximum depth or a stopping criterion. By 

selecting the feature and threshold values that minimize 

impurity, the algorithm constructs a tree that can predict the 

target variable by traversing the tree from the root to a leaf 

node.  

 

Cost complexity pruning is a technique commonly used 

to avoid overfitting and enhance the generalization ability of 

Decision Trees. This technique involves adding a penalty 

term to the impurity reduction criterion, such as the Gini 

index or entropy, to consider the tree’s complexity. The 

complexity parameter, also called alpha, balances the model 

complexity and goodness of fit to the training data. The tree 

is initially grown to its maximum size and then pruned back 

using a bottom-up approach. At each internal node, the 

subtree is removed if the impurity reduction is not significant 

or is overshadowed by the penalty term. The pruning process 

continues for all internal nodes until the desired level of 

pruning is achieved based on alpha. Cross-validation can be 

used to select the optimal alpha value that strikes a balance 

between model complexity and prediction accuracy. 

 

In summary, cost complexity pruning is a powerful yet 

straightforward approach that can improve Decision Trees’ 

generalization performance and mitigate overfitting risks. 

The graph in Figure 1 illustrates the correlation between the 

total impurity and the effective alpha parameter in the 

Decision Tree classifier with the cost complexity pruning 

technique. The graph demonstrates a decreasing pattern, 

which indicates that the total impurity decreases as the 

effective alpha increases. The effective alpha parameter acts 

as a regularization parameter that balances the accuracy and 

complexity of the model.  

 

An increase in the effective alpha simplifies the model, 

thereby decreasing the total impurity. The graph also depicts 

an optimum point of the effective alpha parameter, beyond 

which the model’s performance significantly decreases. This 

optimum value signifies the highest accuracy point of the 

Decision Tree model, which is neither too complex nor too 

simple. Hence, this graph helps determine the optimal value 

of the effective alpha parameter, which is essential to achieve 

the best performance of the model on unseen data. Similarly, 

the graph in Figure 2 displays a decreasing pattern, indicating 

that the number of nodes decreases as the effective alpha 

increases.  

 

The effective alpha parameter controls the trade-off 

between model complexity and accuracy, resulting in a 

simpler model as the effective alpha increases. This graph is 

utilized to determine the optimal effective alpha parameter 

value, which is crucial for achieving the best performance of 

the model on new data. By selecting the optimal value of 

alpha, we can balance the model’s complexity and accuracy 

and avoid overfitting or underfitting. The graph in Figure 3 

illustrates the relationship between the effective alpha 

parameter and the accuracy of the Decision Tree model on 

the test data. This graph helps to determine the ideal effective 

alpha value, which plays a crucial role in achieving the best 

possible performance of the model on unseen data. 

 

5. Experimental Outcome and Discussion 

The accuracy of a machine learning model is a measure 

of its ability to correctly predict the target variable based on 

the input features. As mentioned earlier, our approach has 

achieved 100% accuracy, indicating that it was able to 

correctly classify all samples in the dataset. This can be 

attributed to the Decision Tree’s ability to capture complex 

relationships between the features and the target variable. In 

Table I, the accuracy of various machine learning models is 

compared, and our approach is shown to be the most optimal. 

Also, Figure 4 depicts the confusion matrix of our Decision 

Tree approach. The K Neighbors Classifier achieved a high 

accuracy of 98.21%. This algorithm works by classifying a 

sample based on the class labels of its k nearest neighbors in 

the feature space. The high accuracy suggests that the 

samples in the dataset are well separated in the feature space 

and that the majority of the samples have similar features. 

The Extra-Tree Classifier achieved a 96.7% accuracy by 

building a large number of Decision Trees and selecting the 

best split among a random subset of features at each node.  

 

The high accuracy indicates that the features in the 

dataset have strong predictive power, and the Decision Tree 

ensemble can capture this information effectively.  
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Fig. 4 Confusion Matrix of Effective Decision Tree (Our Approach) 

 

 
Fig. 5 Confusion Matrix of Multi Layer Perceptron Classifier 

 
Fig. 6 Confusion Matrix of Bernoulli naive Bayes classifier 

 

The AdaBoost Classifier achieved a 94.73% accuracy. 

The high accuracy suggests that the dataset contains a large 

number of informative features that can be used to build a 

strong classifier. The Ridge Classifier achieved a 91.81% 

accuracy by fitting a linear model to the data using L2 

regularization. The high accuracy suggests that the features 

in the dataset have a linear relationship with the target 

variable. The MLP Classifier achieved an 89.58% accuracy 

by fitting a neural network model to the data. The relatively 

lower accuracy suggests that the dataset may not contain 

enough samples or features to train a complex neural network 

model effectively.  
 

Figure 5 introduces the confusion matrix of this 

approach. The Passive Aggressive Classifier achieved an 

86.24% accuracy by fitting a linear model to the data using 

an online learning algorithm. The relatively lower accuracy 

suggests that the dataset may contain noisy or irrelevant 

features that are affecting the performance of the model. The 

SGD Classifier achieved an 81.43% accuracy by fitting a 

linear model to the data using stochastic gradient descent. 

The lower accuracy suggests that the features in the dataset 

may not have a strong linear relationship with the target 

variable.  
 

The Gaussian Naive Bayes Classifier achieved a 74.67% 

accuracy by assuming that the features are independent and 

have a Gaussian distribution. The lower accuracy suggests 

that the assumption of independence may not hold for the 

features in the dataset. The Complement Naive Bayes 

Classifier achieved a 55.81% accuracy by assuming that the 

complement of each feature has a multinomial distribution. 

The relatively low accuracy suggests that the assumption of 

the multinomial distribution may not hold for the features in 

the dataset. The Bernoulli Naive Bayes Classifier achieved a 

48.26% accuracy by assuming that the features are binary and 

have a Bernoulli distribution.  
 

The low accuracy suggests that the assumption of binary 

features may not hold for the features in the dataset. Figure 6 

depicts the confusion matrix of this approach. As part of our 

work, we also analyzed the performance of each approach in 

detecting traffic categories. Performance metrics of various 

machine learning approaches on all network categories, 

including encrypted networks, are presented in Figures 7, 8 

and 9. The Decision Tree classifier performs exceptionally 

well on all traffic categories with flawless precision, recall, 

and f1-score. This is because Decision Trees are adept at 

capturing non-linear connections between features and class 

labels. Hence, it can divide the data into smaller segments and 

make decisions based on those divisions, which ultimately 

results in extremely accurate predictions. 
 

Gaussian Naive Bayes works well on benign, brute-

force, brute-forcexml, and XMRIGCC Crypto Miner traffic 

categories but has a relatively lower f1-score on the 

background and probing categories. Gaussian Naive Bayes is 

a probabilistic model that supposes the features are 

autonomous of each other. Therefore, the model may not be 

able to comprehend complex relationships between the 

features, leading to lower performance in certain traffic 

categories. The K Neighbors Classifier performs well in 

detecting benign and Background traffic categories, 

achieving precision and recall scores of around 0.98-0.99. 
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Fig. 7 Performance metrics for the decision tree (Our Approach), K 

Nearest Neighbors, Extra-Tree and Adaboost Classifier 

 

Fig. 8 Performance metrics for the ridge, MLP and passive aggressive 

classifier 

 

Fig. 9 Performance metrics for the gaussian, Complement and 

Bernoulli Naive Bayes classifiers 

 

It also performs well in detecting Probing, Bruteforce, 

and Bruteforce-XML traffic categories, achieving an f1-score 

of 0.93-0.99. However, it has a low recall score in detecting 

XMRIGCC Crypto Miner traffic, indicating that the classifier 

is not very good at detecting this type of traffic. 

 

Similarly, the Extra Tree Classifier performs well in 

detecting all traffic categories, achieving precision and recall 

scores of 1.00 in most cases. This indicates that the classifier 

is very accurate in detecting different traffic categories. The 

AdaBoost Classifier performs well in detecting benign and 

Bruteforce traffic categories, achieving a precision score of 

1.00. However, it performs poorly in detecting Probing, 

Bruteforce-XML, and XMRIGCC Crypto Miner traffic 

categories, with an f1-score of 0.00, which indicates that the 

classifier is not able to classify these traffic categories 

correctly. 

 

The Multilayer Perceptron Classifier also performs well 

in detecting benign traffic with a precision of 1.00 and an f1-

score of 0.84. However, it performs poorly in detecting 

Probing and Bruteforce traffic categories with an f1-score of 

0.00, which indicates that the classifier is not able to classify 

these traffic categories correctly. It also has low recall in 

detecting XMRIGCC Crypto Miner traffic. On the other 

hand, Stochastic Gradient Descent (SGD) performs well in 

the background traffic category, but it has a low f1-score in 

all other traffic categories. The inadequate performance can 

be attributed to the fact that SGD is a linear classifier and may 

not be able to comprehend complex relationships between the 

features, particularly for non-linearly separable data.  
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Moreover, the Passive Aggressive Classifier works 

relatively well on benign and background traffic categories 

but has a low f1-score on all other traffic categories. This 

classifier is a type of online learning algorithm which can 

adapt quickly to new data. However, this classifier may not 

be appropriate for this dataset since the dataset is not 

continuously changing. Gaussian Naive Bayes works well on 

benign, brute-force, brute-force-xml, and XMRIGCC Crypto 

Miner traffic categories but has a relatively lower f1-score on 

the background and probing categories. Gaussian Naive 

Bayes is a probabilistic model that supposes the features are 

autonomous of each other. Therefore, the model may not be 

able to comprehend complex relationships between the 

features, leading to lower performance in certain traffic 

categories. Complement Naive Bayes performs poorly on all 

traffic categories, with low precision, recall, and f1-score. 

This is because the Complement Naive Bayes algorithm is 

intended to work well with imbalanced datasets where the 

number of samples in one class is significantly larger than in 

the other classes. In this case, the dataset is not imbalanced, 

and the algorithm is not suitable for this type of dataset. 

Bernoulli Naive Bayes works well on brute-force-xml and 

XMRIGCC Crypto Miner traffic categories, but it has a low 

f1-score on other traffic categories, particularly benign and 

background. Bernoulli Naive Bayes assumes binary features 

and is typically used for text classification tasks. This 

classifier may not be appropriate for this type of dataset since 

the features are not binary. 

 

6. Conclusion 
We assessed and studied various machine learning 

classifiers, including Decision Tree, Gaussian Naive Bayes, 

Complement Naive Bayes, Bernoulli Naive Bayes, 

Stochastic Gradient Descent, and Ridge Classifier, to detect 

network attacks from the Hikari-2021 dataset. Our Decision 

Tree classifier outperforms all other classifiers, 

demonstrating flawless precision, recall, and f1-score on all 

traffic categories. As such, we can conclude that the Decision 

Tree classifier is one of the most superior classifiers for 

detecting network attacks from the Hikari-2021 dataset, 

owing to its ability to capture non-linear connections between 

features and class labels and segment data to make decisions, 

leading to highly accurate predictions. In future work, we can 

consider studying and exploring more complex machine 

learning models, like neural networks, to further enhance the 

accuracy of our approach. Moreover, combining multiple 

classifiers could improve overall system performance. We 

could also evaluate the performance of these classifiers on 

other datasets to assess their generalizability. Finally, we 

could investigate the feasibility of implementing these 

classifiers in real-time network monitoring systems for 

identifying and mitigating network attacks in real-time. 
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