
International Journal of P2P Network Trends and Technology (IJPTT) – Volume 7 Issue 4 July to August 2017

ISSN: 2249-2615 http://www.ijpttjournal.org Page 16

A Method for Removal of Smells by

Refactoring Web Mashups
R.Kiruthiga, A Alice Gavya

Department of Computer Science and Engineering

Kalaignar Karunanidhi Institute of Technology Coimbatore 641402

Abstract

Web mashups are the web pages which are

created by blending information from multiple

sources. Yahoo! Pipes, the tool used for creating

mashups suffers from various drawbacks like

creation of smells which may lead to software failure.

This work aims to study various complexities and

common deficiencies in the user programmed web

mashups, to identify the prevalence of code smells.

To improve the maintainability, understandability

and reusability of mashups, the smells can be

removed by applying refactoring method. The quality

of mashups before and after applying refactoring will

be compared.

I. INTRODUCTION

A web mashup, is a web page that uses

information from multiple sources to create a single

graphical interface. It gathers and integrates content

from various existing sources to create a single

service. For example, housingmaps.com is a mashup

which provides information like apartments for rent

or homes for sale along with a map on the single site.

Google earth, social networking sites, online news

services, online shopping are some of the sites that

are making use of these mashups. The major

advantage of using these mashups is its low cost to

develop.

There are three types of mashups that are widely

in use. They are

(i) Business mashup

(ii) Customer mashup

(iii) Data mashup

Business mashups defines applications that

combine its own data with that of other external

services. Consumer mashups combines data from

multiple public sources. For example

Wikipediavision combines Google Map and

Wikipedia API. Data mashups combines data from

multiple sources and provides an entirely distinct

service.

A. Yahoo! Pipes

Yahoo! Pipes is a web application which is

used to create web mashups by integrating data from

multiple sources. It enables users to "pipe"

information from different sources and then set up

rules for modifying content. To program these

mashups, users drag and drop predefined modules

onto the canvas, connect the modules via wires, and

parameterize the modules by setting their field values

[1]. The modules perform various predefined

functions, such as retrieving data from a web source

(fetch) or selecting a subset of the retrieved data

(filter), and act as interfaces to an API.

Fig.1. Sample yahoo! Pipes with Functions Fetch and

Filter

B. Refactoring

 Refactoring is a change made to the internal

structure of software to make it easier to understand

and cheaper to modify without changing the way it

intended to work. Code refactoring is the process of

restructuring existing computer code, without

changing its external behavior, to improve the

nonfunctional attributes of the software and also to

create a more expressive internal

architecture or object model to improve extensibility.

 Code smell is an indication that there exists

a problem in the code. Some of these code smells are

present since its creation while some may be

introduced when adding new features. Once

recognized, such problems can be addressed

by refactoring the source code, or transforming it into

a new form that behaves the same as before but

without any smells. The two general categories of

benefits to the activity of refactoring are (i)

Maintainability as it is easier to fix bugs since the

source code is simple to read and the intent of its

author is easy to grasp and (ii) Extensibility as it is

easier to extend the capabilities of the application if it

uses recognizable design patterns.

Prior to applying refactoring to a section of a

code, unit tests are performed to ensure that the

behavior of the module is correct before applying

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 7 Issue 4 July to August 2017

ISSN: 2249-2615 http://www.ijpttjournal.org Page 17

refactoring. If the test fails, it is better to fix the test

and then perform refactoring because it may create

the overhead of distinguishing between failures

introduced by refactoring and failures that were

already present.

With the help of refactoring techniques

mashups created using Yahoo! Pipes are checked to

find code smells and if they are present, they can be

removed. Thus user can get the mashups which are

easy to read, maintain and reuse.

C. Problem of Smells
In spite of increasing power and popularity

of mashup environments, it has been observed that

mashup programs tend to suffer from common

deficiencies, such as being unnecessarily complex,

using inappropriate or dated modules or sources of

data, assembling non standard patterns, and

duplicating values and functionality.

The presence of such deficiencies in mashup

applications is not necessarily surprising, given the

inexperience of the users. The deficiencies that end-

user programmers of mashups encounter have

similarities with those found by professional

programmers and are often referred to as code

smells—indications that something may be wrong

with a section of code. Software engineers have at

their disposal techniques and tools to maintain their

code and address such smells by performing semantic

preserving transformations on their programs to

remove smells, a process called refactoring. This

work focuses on understanding mashup maintenance

through automated smell identification and

refactoring. The smells that increase the complexity

of the pipes can be identified and refactoring is

applied to make the mashups easy to understand,

maintain and reuse.

William f. opdyke et al. describes the

importance of refactoring in designing application

frameworks with the help of Typed Smalltalk

projects and found that the disadvantage is that the

examples include some extraneous detail and

complexity, but has the advantage that the examples

show how refactoring are applied in actual design

tasks[2]. They explained the three of the most

complex refactorings in detail which includes

generalizing the inheritance hierarchy, specializing

the inheritance hierarchy and using aggregations to

model the relationships among classes. The factors

which make refactoring object-oriented frameworks

difficult are (i)there is no theory of how people

refactor frameworks and the kinds of refactorings

they make (ii) some refactoring operations are

difficult to perform (iii) difficult to solve the conflicts

in behavior. The advantages of using these object-

oriented frameworks are (i) it defines a set of

program restructurings that people can apply to

frameworks (iii) it shows how to automatically

support refactorings in a way that preserves the

behavior of a program.

T. Mens et al. analysed the dependencies

between refactorings which can help the developers

to identify the most suitable refactoring for their work

[3]. They used AGG, a state-of-the-art graph

transformation tool which has the built-in critical pair

analysis algorithm and explored how critical pair

analysis can help to detect and analyse conflicts and

dependencies between refactorings. The drawbacks

consisted of (i) some of the conflict situations where

not detected because of insufficient specifications (ii)

sequential dependency analysis still remains a manual

process (iii) Problem of how to deal with conflicts

once they have been detected.

Web mashups are created in thousands daily

as the programmers creating new applications need to

blend information from more than one site. The web

mashup language that is been used widely suffers from

various drawbacks which prevents the common people

from using it. In Yahoo! Pipes, the pipes should be

designed in such a way that it can be reused any

number of times with slight modifications. The design

should be efficient such that it makes use of fewer

modules. Smells, which are the unnecessary coding

that creates problem, should be found in advance and

removed so that the newly designed mashup performs

well without any error. Thus refactoring, which is the

process of modifying the existing code, helps the users

to create mashups that are reusable and easy to

maintain without any complexities.

II. REFACTORING METHOD

 To address the most prevalent code smells, a set

of semantic preserving pipe refactorings have been

defined. The smells are defined in terms of presence or

absence of field values, modules, wires between modules

and the values passed between modules. Two pipes are

semantically equivalent, if the set of unique items that

reaches each pipe’s final output module are the same,

ignoring duplicate items and items’ order. Both

preconditions and post conditions are specified for each

transformation, which ensures that the internal behavior

of the pipe is preserved. The refactoring is applied only if

the conditions can be satisfied. Each refactoring

transformation is decomposed into a set of more basic

transformations that are applied to the smelly pipes. The

refactored pipes will be free from the smells that caused

the complexity of the pipes.

The proposed approach aims to

 Identify and define the most prevalent smells in

Yahoo! Pipes environment.

 Design of domain-specific transformations to

refactor smelly pipe-like mashups.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 7 Issue 4 July to August 2017

ISSN: 2249-2615 http://www.ijpttjournal.org Page 18

A. Detection of Smells in Pipes

 Three different types of smells are identified in

the mashups[4]. They are

1) Lazy smell

2) Redundancy smell

3) Environment smell

1) Lazy Smell Detection

These smells contain the modules or fields

that do not lead to the output of the pipe, making it

more complex. Lazy smells include (i) Noisy module

and (ii) Unnecessary module. Noisy module is a

module that has unnecessary fields like empty field

and duplicated field, making the pipe harder to read

and less efficient to execute. Empty field describes a

blank field in a generator module. Duplicated field

describes the case when two fields in a single module

have the same value. Unnecessary module is a module

whose execution does not affect the pipe’s output. It

includes (i) Cannot reach output describes a module

that does not contain an outgoing wire to the output

module, thus from this module output cannot be

reached. (ii) Ineffectual path altering describes a path

altering module with exactly one input and output

wire. (iii) Swaying module are the modules that do not

provide any data to the pipe and do not receive any

incoming data.

2) Redundancy Smell Detection

Redundancy smells include duplicate strings,

duplicate modules, identical subsequent operators and

identical parallel operators. These smells when not

identified and removed will add complexity to

programs and affects readability and reusability

3) Environment Smell Detection

Environment smells include deprecated

module which is a module that is no longer supported

by the pipe environment and invalid source which is

an external source when attempted to retrieve data

result in error like 404 Not Found.

B. Refactoring

Refactoring is the process of making some

changes to the code such that it reduces unnecessary

complexities and improves readability thereby making

it more efficient.

1) Refactoring Lazy Smell:

When the Lazy smells are identified the next

step is to apply refactoring. Refactoring removes

empty or duplicated fields within a module and then

the non contributing modules if present, are removed.

2) Refactoring Redundancy Smell:
When the redundant smells are detected

refactoring should be applied to remove these smells.

This can be done by merging redundant modules and

by aggregating paths to a single path to simplify the

pipe structure

3) Refactoring Environment Smell:

 Environmental errors are detected and then

the refactoring is applied which removes these smells

by replacing deprecated modules and invalid sources.

III. EXPERIMENTAL RESULTS

Fig.2. Loading the JSON Representation of the Pipe

The first step is the loading of JSON

representation of the pipe. JSON is derived from

Javascript and is language-independent data format

[5]. It is the most common data format used for

asynchronous browse, replacing XML which is used

by AJAX.

Fig.3. Detection of Empty Fields and Duplicate Smells

 The next step is the detection of lazy smells

if it is present in the pipe. The JSON representation

of the webpage is checked to identify and remove

such smells.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 7 Issue 4 July to August 2017

ISSN: 2249-2615 http://www.ijpttjournal.org Page 19

 Fig 3. Detection of Redundant Modules

 The next step is the detection and removal of

redundant modules present in the pipe.

 Fig.4. Detection of Invalid Sources

 Fig.5. Comparison Table

 This tabulation gives the percentage of

smells present before and after refactoring. Thus the

provided JSON representation had 68% of lazy

smells, 70% of redundancy smells and 76% of

environment smells which are reduced to 46%, 8%

and 23% respectively.

CONCLUSION

Mashups are being developed rapidly as it helps

the end users to combine information from multiple sites

into a single interface with a low cost and effort.

However, the pipe-like mashups tend to suffer from

various kinds of smells like lazy smells, redundancy

smells and the environment smells. These smells are the

unnecessary coding which creates problems when not

identified and removed at the right time. Refactoring,

which is the process of introducing some changes to the

existing code, is the technique that is applied here to

remove all the smells that are present. The performance

tabulation shows the decrease in the percentage of smells

that were present in the pipes. Thus it proves that the

amount of smells present in the pipes can be reduced by

using refactoring.

REFERENCE
[1] “Yahoo! Pipes”, https://pipes.yahoo.com/pipes/.

[2] William F. Opdyke,”Refactoring Object-Oriented

Frameworks”, PhD thesis, University of llinois at Urbana-

Champaign Champaign, USA, 1992

[3] T. Mens, G. Taentzer, and O. Runge, (2007), “Analysing

Refactoring Dependencies Using Graph Transformation,”

in Software and Systems Modeling, vol. 6, no. 3, pp. 269-

285.

[4] Kathryn T. Stolee, Sebastian Elbaum, “Refactoring Pipe-

like Mashups for End-User Programmers”, Software

Engineering (ICSE), 2011 33rd International Conference

on 21-28 May 2011

[5] JSON,” http://www.json.org/.

