
International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 2 March to April 2016

ISSN: 2249-2615 http://www.ijpttjournal.org Page 12

Improve Resource Allocation for Cloud

Computing Environment
R.Navinkumar, MCA., R.Ramamoorthy (Final MCA).,

Assistant Professor,

Department of Computer Application, Nandha Engineering College, Erode, Tamil Nadu, India.

Abstract—The elasticity and the lack of upfront

capital investment offered by cloud computing is

appealing to many businesses. There is a lot of

discussion on the benefits and costs of the cloud

model and on how to move legacy applications

onto the cloud platform. Here we study a different

problem: how can a cloud service provider best

multiplex its virtual resources onto the physical

hardware? This is important because much of the

touted gains in the cloud model come from such

multiplexing.

Cloud computing allows business customers to

scale up and down their resource usage based on

needs. Many of the touted gains in the cloud model

come from resource multiplexing through

virtualization technology. This project presents a

system that uses virtualization technology to

allocate data center resources dynamically based

on application demands and support green

computing by optimizing the number of servers in

use.

The project introduces the concept of

“skewness” to measure the unevenness in the

multidimensional resource utilization of a server.

By minimizing skewness, we can combine different

types of workloads nicely and improve the overall

utilization of server resources. It develops a set of

heuristics that prevent overload in the system

effectively while saving energy used.

I. INTRODUCTION

Cloud computing is the delivery of computing as

a service rather than a product, whereby shared

resources, software and information remain

provided to users over the network. Cloud

computing providers deliver application by the

Internet, which are accessed after web browser,

though the business software and data are stored on

waiters at a remote location.

Cloud providers are bright to attain the agreed

SLA, by scheduling resources in effectual manner

and by deploying application on good VM as per

the SLA objective and at the same time

performance of the applications necessity be

optimized. Presently, here exists a more work done

on scheduling of applications in Clouds [1], [2],

[3]. These methods are usually seeing one single

SLA objective such as cost of execution, execution

time, etc. Owing to combinatorial countryside

scheduling algorithm with multiple SLA objective

for best mapping of load with multiple SLA

parameters to resources is originate to be NPhard

[4]. The available explanations are based on the use

of heuristics.

Once a job is submitted to the clouds, it is usually

divided into several tasks. Next two questions are

need to consider when applying parallel

dispensation in executing these tasks: 1). how to

assign resources to tasks; 2) task are executed in

pardon order in cloud; and 3) how to schedule

overheads when VMs prepare, dismiss or switch

tasks. Task scheduling and resource allocation can

solve these three problems. In embedded systems

[5], [6] and in high performance computing [7], [8]

chore scheduling and resource allocation have been

studied.

Classically, efficient provisioning needs two

distinct steps or processes: (1) initial static

planning step: the originally group the set of VMs,

formerly classify them and deployed onto a set of

bodily hosts; and (2) dynamic resource

provisioning: the allocation of additional

resources, creation and migration of VMs,

dynamically responds to variable workload. Step 2

runs unceasingly at production time anywhere in

contrast Step 1 is usually performed at the early

system set up time and may only be recurrent for

overall clean-up and upkeep on a monthly or

semi-annually schedule.

Now this paper we focus on dynamic resource

provisioning as stated above in step 2. In order to

attain the agreed SLA objective our proposed

algorithm dynamically replies to fluctuating work

load by pre-empting the current executing task

taking low priority with high importance task and

if pre-emption is not possible due similar priority

formerly by creating the new VM form worldwide

available resources.

In section II, we deliberate works related to this

subject. In section III, models for resource

distribution and task scheduling in IaaS cloud

computing system remain presented. We propose

our algorithms in section IV, trailed by

experimental result in section V. Lastly, we give

the conclusion in section VI.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 2 March to April 2016

ISSN: 2249-2615 http://www.ijpttjournal.org Page 13

II. RELATED WORK

In [9] author proposed architecture, using

feedback control attitude, for adaptive

management of virtualized resources, which is

founded on VM. In this VM-based building all

hardware resources are joint into common shared

space in cloud computing substructure so that

presented application can access the required

capitals as per there need to see Service Level

Objective (SLOs) of application. The adaptive

manager use in this architecture is multi-input

multi-output (MIMO) reserve manager, which

includes 3 controllers: CPU controller, memory

controller and I/O controller, its goalmouth is

regulate multiple virtualized resources use to

achieve SLOs of application by using control

inputs per-VM CPU, memory and I/O allocation.

The influential work of Walsh et al. [10],

proposed a general two-layer architecture that

usages utility functions, accepted in the context of

dynamic and autonomous resource allocation,

which consists of local agents and global arbiter.

The accountability of local agents is to calculate

efficacies, for given current before forecasted

workload and variety of resources, for apiece AE

and results are transfer to global arbiter.

Anywhere, global arbitrator computes near-

optimal configuration of resources founded on the

results providing by the local agents. In global

arbitrator, the new formations applied by

assigning new capitals to the AEs and the new

configuration computed also at the end of fixed

control intervals or in an event activated manner

or anticipated SLA violation.

In [11], writers propose an adaptive resource

allocation algorithm for the cloud system with pre-

empt able tasks in which algorithms regulate the

resource allocation adaptively based on the efficient

of the actual task executions. Adaptive list

scheduling (ALS) and adaptive min-min scheduling

(AMMS) algorithms are used for task scheduling

which includes still task scheduling, for static

resource allocation, is generated offline. The online

adaptive process is use for re-evaluating the

residual static resource allocation repeatedly with

predefined incidence. In each re-evaluation process,

the schedulers are re-calculating the surface time of

their respective submitted tasks, not the tasks that

are assign to that cloud.

The dynamic resource distribution based on

distributed multiple criteria choices in computing

cloud clarify in [12]. In it author influence is two-

fold, first dispersed architecture is adopted, in

which resource organisation is divided into

independent tasks, apiece of which is performed by

Autonomous Node Agents (NA) in ac series of

three activities: (1) VM Placement, in it appropriate

physical machine (PM) is originate which is

capable of seriatim given VM and then assigned

VM to that PM, (2) Nursing, in it total resources

use by hosted VM are monitored by NA, (3) In VM

Selection, if local lodging is not possible, a VM

need to migrate at another PM then process loops

back to hooked on placement. Then second, using

PROMETHEE method, NA carry out shape in

parallel through multiple criteria decision analysis.

This approach is possibly more feasible in large

data centres than centralized approaches.

The problem of resource allocation is careful in

[13], to optimize the total income gained from the

multidimensional SLA agreements for multi-tire

application. In it the upper certain of total profit is

provided by the help of force-directed resource

assignment (FRA) heuristic algorithm, in which

initial explanation is based on providing solution

for profit upper certain problem. Next, distribution

rates are fixed and local optimization step is use for

refining resource sharing. Lastly, a resource

consolidation practise is applied to consolidate

capitals to determine the active (ON) servers and

further enhance the resource assignment.

Using steady state timing models, this [14] paper

intelligences a study of cloud HPC resource

preparation. In it author propose measureable

application dependent instrumentation technique to

investigate multiple important dimensions of a

agenda’s scalability. Consecutive and parallel

timing model with program arrangements can

reveal architecture specific deliverable

presentations that are difficult to quantity

otherwise. These models are introduces to attach

multiple dimensions to time domain and application

speed up model is use to tie these models in same

equation. The aptitude to explore multiple

dimension of program quantitatively, to gain non-

trivial vision. For target processing setting authors

use Amazon EC2.

In earlier years, the aims of dispersed system

have been cantered on the decoupling of interfaces

after service oriented architectures (SOA) [16],

application, subscription model, hosting models

then social

collaboration. Lately, Internet-based dispersed,

multitenant [17] applications connective to

internal business applications, recognised as

software as a service (SaaS) [18], are ahead

popularity. The previous work [19-21] on web

application scalability applied for static load

balancing solution by server clusters but the

dynamic scaling of web applications in virtualized

cloud computing has not been much deliberated.

Since such kinds of work load require minimum

retort time and high level of availability and

dependability from web applications.

A explanation for dynamic scaling of web

application provided in [22] by describing an

architecture to scale web application in dynamic

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 2 March to April 2016

ISSN: 2249-2615 http://www.ijpttjournal.org Page 14

method, based on dawn in a virtualized cloud

computing environment. Building consists of

front-end load balancer, a no. of web application

virtual machine. In it apache HTTP Load Balancer

is a front-end load-balancer for steering and

balancing user requests to web application

deployed on Apache HTTP server that are installed

in Linux virtual machine. As per the request these

virtual machines are started and provisioned by a

provisioning sub-system. Then the action of

provisioning and de-provisioning of web server

cybernetic machine cases control by a dynamic

scaling algorithm based on relevant verge of web

application.

III. USE TECHNIQUES

In this section we are recitation SLA based

resource provisioning then online adaptive

scheduling for Pre-emptible task execution, these

two practises which are combined in proposed

algorithm for actual utilization of cloud resources

to see the SLA objective.

A. Cloud Resource provisioning and

scheduling heuristic

The service requests from customers crowd by

combining the three different layers of resource

provisioning as shown

Service deployment requests after customers is

place to the service portal (step 1 in Figure1),

which forward the requests to the appeal

management then processing component to

authenticate the requests with the help of SLA (step

2). If the request is valid, it is formerly pass to the

scheduler then load-balancer (step 3). Aimed at

deploying the requested service, scheduler picks the

appropriate VMs, as per SLA and priority, ended

the provisioning engine in PaaS layer and the load-

balancer balances the service provisioning amongst

the running VMs (step 4). The VMs on the

virtualization layer achieve by provision trainthen

the virtualization layer interconnects with the

physical resources with the help of the provision

locomotive in IaaS layer (step 5).The LoM2HiS

framework screens the low-level resource metrics

of the physical assets at IaaS layer [25] (step 6). If

SLA violation happens, sensitive actions deliver by

the info database techniques [26] in FoSII (step 7).

The requested service location and the SLA

information are connected back with the service

portal (step 8).

Provisioning can be complete at the single

coatings alone. Though, approach which we careful

in [24] aims to provide an combined resource

provisioning plan. So, scheduling heuristics in [24]

reflects the three layers.

An aim of scheduling experiential in [24] is to

schedule job on VMs based on the agreed SLA

objective and creating new VMs on bodily

resources based on availabilities resources. This

policy helps to enhanced application performance

then at the same time reducing the potentials of

SLA violations. Then, the combined load-balancer

(Algorithm 1 Load-balancer given below) in the

heuristic protections high and effectual resource

operation in the Cloud setting.

The customers’ service deployment requests
(R) is provide as input to scheduler which

contain of the SLA terms (S) and the request data
(A) to be provisioned. Formerly it gets the total
available physical resources (AR) formerly the

number of running VMs in the data center in

cloud. The SLA footings are used to find a list of

suitable VMs (AP) talented of provisioning the
requested service (R).

The load-balancer is available below in

Algorithm 1. Suitable VM list is provided as input

to it (line 1 in Algorithm 2). In its procedures, in

order to know how to balance the load between the

VMs it first discoveries out the number of available

consecutively VMs in the data centre (line 2). In the

next step, it gets a list of VMs which are already

billed to job i.e. list of used VMs. (line 3). It clears

the list if this tilt is equivalent to the number of

running VMs, because that income all the VMs are

currently allocated to some applications (lines 4-7).

1. Input: AP(R,AR)

2. Available VM List //list of available

VMs form each cloud

3. Used VM List //list of VMs, currently

provision to certain job

4. Deployable Vm=null

Algorithm 1 Load Balancer

in following figure 1[24].

Figure 1 . Cloud Provisioning and Deployment model

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 2 March to April 2016

ISSN: 2249-2615 http://www.ijpttjournal.org Page 15

5. if

size(usedVMList)=size(availbleVMList

) then

6. clear usedVMList

7. End if

8. for vm in (AP,R,AR) do

9. if vm not in usedVMList then

10. Add VM to usedVMList

11. deployableVm= vm

12. Break

13. End if

14. End for

15. Return deployableVm

So, the first VM from the appropriate and

available VM list can be selected aimed at the

deployment of the new job request. Finally, the

selected VM will be added to the list of used VMs

so that the load-balancer will not choice it in the

next repetition (lines 8-15).

B. Preemptable task execution

Once a scheduler finds customer’s service

request, it will first divider that service request

into shops in the form of a DAG. Previously

initially static resource allocation is done. In [11]

authors forthcoming two greedy algorithms, to

make the static distribution: the cloud list

scheduling (CLS) and the cloud min-min

scheduling (CMMS).

1) Cloud list scheduling (CLS):This CLS is

similar to CPNT [27]. The meanings used for

listing the task are provided as shadow. The

earliest start time (EST) and the latest start time

(LST) of a task are exposed as in (1) and (2).The

entry-tasks have EST equals to 0. Then The LST

of exit-tasks equal to their EST.

EST (vi) max {EST (v m) AT (v m)}(1)
v m pred (v i)

LST (vi) max {LST (v m)} AT (vi

)(2)
v m succ (v i)

As the cloud system worried in [11] is varied

the execution time of each task on VMs of

different clouds are not the same. AT() is the

average execution time of task . The critical node

(CN) is a set of apexes having equal EST and LST

in the DAG. Algorithm 2 shows a function

starting a task list based on the priorities.

Algorithm 2 Founding a task list based on
priorities

Require (input): A DAG, Average execution

time

AT of every task in the DAG

Ensure (output): A list of task P based on
priorities

1. The EST is calculated for every

task

2. The LST is calculated for every
task

3. The Tp and Bp of every task are
calculated

4. Empty list P and stack S, and pull

all task in the list of task U

5. Push the CN task into stack S in
decreasing order of their LST

6. While the stack S is not empty do

7. If top(S) has un-stacked immediate

predecessors then

8. S the immediate predecessor
with least LST

9. Else

10. P top(S)

11. Pop top(S)

12. End if

13. End while
Once the above algorithm 2 form the list of task

according there priority, we can allocate resources to

tasks in the order of formed list. When all the

predecessor tasks of the assigned task are finished

then cloud resources allocated to them are

accessible, the assigned task will start its effecting.

This task is removed from the list afterward its

assignment. This procedure is repeats until the list

is empty.

2) Cloud min-min scheduling (CMMS):Min-min

scheduling is popular greedy algorithm [28]. The

dependences among tasks not careful in original

minmin algorithm. Thus in the dynamic min-min

algorithm used in [2], authors uphold the task

dependences by updating the map able task set in

every preparation step. The tasks whose precursor

tasks are all assigned are placed in the map able

task set. Algorithm 3 shows the quasi codes of the

CMMS algorithm.

A cloud scheduler record implementation

schedule of all resources using a slot. Once an AR

task is assigned to a cloud, first reserve availability

in this cloud will be checked by cloud scheduler.

Then best-effort task can be pre-empted by AR

task, the only case once most of resources are

earmarked by some other AR task. Later there are

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 2 March to April 2016

ISSN: 2249-2615 http://www.ijpttjournal.org Page 16

not enough resources left for this AR task in the

obligatory time slot. If the AR task is not

disallowed, which means there are enough

resources obtainable for the task, a set of required

VMs are selected randomly.

The estimated finish time of task may not be

same as real finish time due to the resource

argument within individual cloud. Later to adjust

the resource allocation animatedly based on the

latest available information writers in [2] propose

an online adaptive scheduling process.

In future online adaptive procedure the remaining

static resource distribution will be re-evaluate

recurrently with a predefined incidence. In each re-

evaluation, the schedulers will re-calculate the

projected finish time of their tasks. Note that a

scheduler of a assumed cloud will only reconsider

the tasks that are in the jobs succumbed to this

cloud, not the errands that are assigned to this

cloud.

Algorithm 3 Cloud min-min scheduling

(CMMS)

Require: A set of tasks, m different clouds ETM

matrix

Ensure: A schedule generated by CMMS

1. For a mappable task set P

2. While there are tasks not assigned do

3. Update mappable task set P

4. For I = task vi ∈ P do

5. Send task check requests of vi to all

other cloud schedulers

6. Receive the earliest resource available

time response and And list of task with

their priorities form all other cloud

scheduler

7. Find the cloud Cmin(vi) giving the

earliest finish time of vi, assuming no

other task preempts vi

8. End for

9. Find the task-cloud pair (vk, Cmin(vk))

with

earliest finish time in the pairs

generated in forloop

10. Assign task v k to cloud Dmin(vk)

11. Remove v k form P

12. Update the mappbale task set P

13. End while

IV. SCHEDULING ALGORITHM

In proposed importance based preparation

algorithm we have adapted the scheduling

experiential in [24] for executing highest priority

task with advance reservation by pre-empting

best-effort task as done in [11]. Algorithm 4

shows the quasi codes of priority based scheduling

algorithm (PBSA).

Algorithm 4 Priority Based Scheduling

Algorithm (PBSA)

1. Input: UserServiceRequest

2. //call Algorithm 2 to form the list of

task based on priorities

3. get globalAvailableVMList and

gloableUsedVMList and also

availableResourceList from each

cloud schedular

4. // find the appropriate VMList

fromeach cloud scheduler

5. if AP(R,AR) != ф then

6. // call the algorithm 1 load balancer

7. deployableVm=load-

balancer(AP(R,AR))

8. Deploy service on deployableVM

9. deploy=true

10. Else if R has advance reservation and

best-effort task is running on any

cloud then

11. // Call algorithm 3 CMMS for

executing R with advance

reservation

12. Deployed=true

13. Else if

globalResourceAbleToHostExtraVM

then

14. Start newVMInstance

15. Add VMToAvailbaleVMList

16. Deploy service on newVM

17. Deployed=true

18. Else

19. queue serviceReuest until

20. queueTime > waitingTime

21. Deployed=false

22. End if

23. If deployed then

24. return successful

25. terminate

26. Else

27. return failure

28. terminate

As exposed above in Algorithm 4, the customers’
service deployment requests (R), which is calm of
the SLA terms (S) and the application data (A) to
be provisioned, is provided as input to scheduler
(line 1 in Algorithm 1). Once service request (i.e.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 2 March to April 2016

ISSN: 2249-2615 http://www.ijpttjournal.org Page 17

job) reach at cloud scheduler, scheduler divide it in
tasks as per there dependencies formerly the
Algorithm 2 is called to procedure the list of tasks
based to their importance (line 2). In the first step, it
extracts the SLA terms, which forms the basis for
finding the VM with the suitable resources for
deploying the application. In next step, it collects
the material about the number of running VMs in
each cloud and the total available resources (AR)
(line 3). Rendering to SLA terms appropriate VMs
(AP) list is form, which are capable of provisioning
the requested service (R) (lines 4-5).

When the list of suitable VMs is form, the
Algorithm 1load-balancer chooses which particular
VM is allocated to service appeal in order to
equilibrium the load in the data center of each cloud
(lines 6-9).

Once there is no VM with the suitable resources
running in the data center of any cloud, the
scheduler checks if service request (R) has advance
registration then it search for best-efforts task
running on any cloud or not, if it originate best-
effort task then it calls Algorithm 3 CMMS for
performing advance reservation request by pre-
empting best-effort task (lines 1012). If no best-
effort task is found on any cloud then scheduler
forms whether the global capitals containing of
physical capitals can crowd new VMs, if yes then,
it mechanically starts new VMs with predefined
resource sizes to provision service requests (lines
13-17). Then when global resources are not
adequate to host extra VMs, the provisioning of
service request is place in queue by the scheduler
until a VM with suitable resources is available
(lines 18-22). If after a certain period of time, the
service requests can be scheduled and deployed,
before scheduler returns a scheduling success to the
cloud admin, then it returns failure (lines 23-28).

V. EXPERIMENTAL RESULTS

A. Experiment setup

We assess the performance of our priority based

scheduling algorithm finished simulations. By

different set of jobs simulation is done in 10 runs.

In each run of imitation, we simulate a set of 70

different service requests (i.e. jobs), and each

service appeal is composed of up to 18 sub-tasks.

We reflect 4 clouds in the imitation. All 70 service

requests will be succumbed to random clouds at

random arrival time. Amongst these 70 service

request, 15 requests are in the AR modes, though

the rest are in the best effort modes, with different

SLA objectives. The limits in Table 1 are set in

simulation randomly rendering to their maximum

and minimum values. Since we focus only on the

preparation algorithms, we do our imitations locally

without applying in any exiting cloud system or

using VM interface API.

Table 1 RANGE OF PARAMETERS
Parameter Minimum Maximum

ETMi,j 27 120
Number of VMs in a

cloud
22 120

Number of CPU in a VM 1 8
Memory in a VM 40 2048
Disk space in VM 5000 100000

Speed of copy in disk 100 1000

We reflect two situations for arrival of service
request. In first situation, called as loose state, we
spread arrival time of request extensively over
time so that appeal does not need to contend
capitals in cloud. In other state we set influx time
of requests close to each other, so recognised as
tight situation. The time passes from request is
submitted to the request is ended, is defined as
execution time.

B. Results

Figure 2 shows the regular job execution time in

loose situation. We find out that the PBSA

algorithm has the minimum normal execution

time. The resource contentions happen when

best-effort job is pre-empted by AR job. As

resource contention less in loose state, so that

projected finish time of job is close to the actual

finish time. Hence adaptive process does not

impact the job implementation time

significantly.

Figure 2. Average job execution time in loose situation

In figure 3 tight situation results are shown in

which PBSA does better than CMMS. In tight

state resource contention is more so the actual

surface time of job is often later than estimated

finish time. As AR job pre-empt best-effort job,

the adaptive process with updated information

works more meaningfully in tight situation.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 2 March to April 2016

ISSN: 2249-2615 http://www.ijpttjournal.org Page 18

Figure 3. Average job execution time in tight situation

VI. CONCLUSIONS

In this paper, we present dynamic resource

allocation mechanism for Pre-emptible jobs in

cloud. We propose priority based algorithm, in

which seeing multiple SLA objectives of job, for

dynamic resource allocation to AR job by pre-

empting best-effort job. Imitation results show that

PBSA perform better than CMMS in resource

contention situation.

REFERENCES

[1] S. K. Garg, R. Buyya, and H. J. Siegel, “Time and cost

trade off management for scheduling parallel

applications on utility grids,” Future Generation.

Computer System, 26(8):1344–1355, 2010.

[2] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle

swarm optimization-based heuristic for scheduling

workflow applications in cloud computing

environments,” in AINA ’10: Proceedings of the 2010,

24th IEEE International Conference on Advanced

Information Networking and Applications, pages 400–

407, Washington, DC, USA, 2010, IEEE Computer

Society.

[3] M. Salehi and R. Buyya, “Adapting market-oriented

scheduling policies for cloud computing,” In Algorithms

and Architectures for Parallel Processing, volume 6081

of Lecture Notes in Computer Science, pages 351–362.

Springer Berlin / Heidelberg, 2010.

[4] J. M. Wilson, “An algorithm for the generalized

assignment problem with special ordered sets,” Journal

of Heuristics, 11(4):337–350, 2005.

[5] M. Qiu and E. Sha, “Cost minimization while satisfying

hard/soft timing constraints for heterogeneous embedded

systems,” ACM Transactions on Design Automation of

Electronic Systems (TODAES), vol. 14, no. 2, pp. 1–30,

2009.

[6] M. Qiu, M. Guo, M. Liu, C. J. Xue, and E. H.-M. S. L. T.

Yang, “Loop scheduling and bank type assignment for

heterogeneous multibank memory,” Journal of Parallel

and Distributed Computing(JPDC), vol. 69, no. 6, pp.

546–558, 2009.

[7] A. Dogan and F. Ozguner, “Matching and scheduling

algorithms for minimizing execution time and failure

probability of applications in heterogeneous computing,”

IEEE Transactions on Parallel and Distributed Systems,

pp. 308–323, 2002.

[8] T. Hagras and J. Janecek, “A high performance, low

complexity algorithm for compile-time task scheduling

in heterogeneous systems,” Parallel Computing, vol. 31,

no. 7, pp. 653–670, 2005.

[9] “Adaptive Management of Virtualized Resources in

Cloud Computing Using Feedback Control,” in First

International Conference on Information Science and

Engineering, April 2010, pp. 99-102.

[10] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das,

“Utility Functions in Autonomic Systems,” in ICAC ’04:

Proceedings of the First International Conference on

Autonomic Computing. IEEE Computer Society, pp. 70–

77, 2004.

[11] Jiayin Li, Meikang Qiu, Jian-Wei Niu, Yu Chen, Zhong

Ming, “Adaptive Resource Allocation for Preempt able

Jobs in Cloud Systems,” in 10th International Conference

on Intelligent System Design and Application, Jan. 2011,

pp. 31-36.

[12] Yazir Y.O., Matthews C., Farahbod R., Neville S.,

Guitouni A., Ganti S., Coady Y., “Dynamic resource

allocation based on distributed multiple criteria decisions

in computing cloud,” in 3rd International Conference on

Cloud Computing, Aug. 2010, pp. 91-98.

[13] Goudarzi H., Pedram M., “Multi-dimensional SLA-based

Resource Allocation for Multi-tier Cloud Computing

Systems,” in IEEE International Conference on Cloud

Computing, Sep. 2011, pp. 324331.

[14] Shi J.Y., Taifi M., Khreishah A.,“Resource Planning for

Parallel Processing in the Cloud,” in IEEE 13th

International Conference on High Performance and

Computing, Nov. 2011, pp. 828-833.

[15] Aoun R., Doumith E.A., Gagnaire M., “Resource

Provisioning for Enriched Services in Cloud

Environment,” IEEE Second International Conference on

Cloud Computing Technology and Science, Feb. 2011,

pp. 296-303.

[16] T. Erl, “Service-oriented Architecture: Concepts,

Technology, and Design”, Upper Saddle River, Prentice

Hall, 2005.

[17] F. Chong, G. Carraro, and R. Wolter,“Multi-Tenant Data

Architecture”, Microsoft Corporation, 2006.

[18] E. Knorr, “Software as a service: The next big thing”,

InfoWorld, March 2006.

[19] V. Ungureanu, B. Melamed, and M.Katehakis,“Effective

Load Balancing for Cluster-Based Servers Employing

Job Preemption,” Performance Evaluation, 65(8), July

2008, pp. 606-622.

[20] L. Aversa and A. Bestavros. “Load Balancing a Cluster

of Web

Servers using Distributed Packet Rewriting”,

Proceedings of the 19th IEEE International Performance,

Computing, and Communication Conference, Phoenix,

AZ, Feb. 2000, pp. 24-29.

[21] V. Cardellini, M. Colajanni, P. S. Yu,“Dynamic Load

Balancing on Web-Server Systems”, IEEE Internet

Computing, Vol. 33, May-June 1999 , pp. 28 -39.

[22] Chieu T.C., Mohindra A., Karve A.A., Segal A.,

“Dynamic Scaling of Web Applications in a Virtualized

Cloud Computing Environment,” in IEEE International

Conference on e-Business Engineering, Dec. 2009, pp.

281-286.

[23] Naidila Sadashiv, S. M Dilip Kumar, “Cluster, Grid and

Cloud Computing: A Detailed Comparison,” The 6th

International Conference on Computer Science &

Education (ICCSE 2011) August 3-5, 2011. SuperStar

Virgo, Singapore, pp. 477- 482.

[24] Vincent C. Emeakaroha, Ivona Brandic, Michael Maurer,

Ivan Breskovic, “SLA-Aware Application Deployment

and Resource Allocation in Clouds”, 35th IEEE Annual

Computer Software and Application Conference

Workshops, 2011, pp. 298-303.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 2 March to April 2016

ISSN: 2249-2615 http://www.ijpttjournal.org Page 19

[25] V. C. Emeakaroha, I. Brandic, M. Maurer, and S.

Dustdar, “Low level metrics to high level SLAs -

LoM2HiS framework: Bridging the gap between

monitored metrics and SLA parameters in cloud

environments,” In High Performance Computing and

Simulation Conference, pages 48 – 55 , Caen, France,

2010.

[26] M. Maurer, I. Brandic, V. C. Emeakaroha, and S.

Dustdar, “Towards knowledge management in self-

adaptable clouds,” In 4th International Workshop of

Software Engineering for Adaptive Service-Oriented

Systems (SEASS’10) , Miami, Florida, USA, 2010.

[27] T. Hagras and J. Janecek, “A high performance, low

complexity algorithm for compile-time task scheduling

in heterogeneous systems,” Parallel Computing, vol. 31,

no. 7, pp. 653–670, 2005.

[28] O. H. Ibarra and C. E. Kim, “Heuristic Algorithms for

Scheduling Independent Tasks on Non-identical

Processors,” Journal of the ACM, pp. 280–289, 1977.

