
International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 1 January to February 2016

ISSN: 2249-2615 http://www.ijettjournal.org Page 31

Analysis of a Hybrid Clone Detection

Technique
Dr.G.Anil Kumar

Sr. Assistant Professor CSE MGIT Hyderabad T.S. India

Abstract:

Any software code clone detection technique should

prove itself efficient in terms of some quality

parameters. In this paper we discuss about two

quality parameters, that is precision and recall. This

method proved efficient in terms of these two

parameters over the suffix tree method.

The proposed software clone detection system has

been implemented in the working platform of JAVA

(version JDK 1.6). Here we use the source code with

different sizes of Software Lines of Code (SLOC).

The main goal of the proposed method is to identify

all four types of clones in the source code. This can

be achieved by combining two methods called textual

analysis and metrics method. In the proposed method

metrics analysis is done through the twelve metrics.

These metrics are used to identify the potential

clones. Then, textual approaches are applied. These

textual approaches include line by line comparison

using string matching algorithm. Tokenization

approach is also used to identify the similarity

between language constructs which are divided as

tokens. The step by step results obtained from the

proposed method is described in following section.

We first explained the functionality of the tool which

we developed for the proposed method and then a

case study which explains how this tool figure out

clones from a set of code fragments.

System functionality

The working model of the system explained in this

section. The system takes input files and processes

them and gives results. This process is explained with

captured screen shots.

Figure 4.1: Initial Process

Figure 4.1 represents the initial screen obtained in the

clone detection process to Load the database that is

set of source programs using browse button. The

Root source directory field will be filled if a

particular folder or file is browsed from the source.

Here there are two options to select a file. Selecting a

file compares the file with the content of the same

file which is shown in Figure 4.2 and selecting a

folder compares the files contained in the folder (i.e.

more than one file) which is shown in Figure 4.3. The

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 1 January to February 2016

ISSN: 2249-2615 http://www.ijettjournal.org Page 32

clone detection procedure is same for both the

selections, only difference is that if a folder is

selected, the tool will concatenate all the files in the

folder. After concatenation normalization and the

other procedure follows as a single file. Then

selecting the Report duplicate larger than field to

find the code fragments that are repeated specified

number of times. Language field by default set to

JAVA because this research is restricted to compare

JAVA language constructs. File encoding for token

based approaches the default system based encoding

was adapted.

Figure 4.2: loading the database as a file

The source code will be divided into tokens. The

tokenization happens exactly like what happens with

our source code in a compiler. These tokens are

defined in the tool according to code constructs of

Java. The source code loaded as database to the tool,

it will compare each token with all other tokens of

the code fragment. The discovered clones are stored

in a file for further analysis.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 1 January to February 2016

ISSN: 2249-2615 http://www.ijettjournal.org Page 33

Figure 4.3: loading the database as a folder

After loading the database and selecting the input

files/folder to detect the clones using Process button.

In this process the preprocessing is done by

concatenation of the files present in the folder. It

makes any number of files present in the folder to

form a single large file. Then it processes the file like

processing a single file. Then, it normalizes the data

of the source code in a single file. Normalization

includes three activities which are

i. White space removal

ii. Comments removal and

iii. Unwanted code removal

Whitespace removal is a process of eliminating blank

lines and blank spaces used to make the program

structure understandable. Comments removal is the

process of removing comment lines presented in the

given Java code fragments. Finally, unwanted code

removal is the process of removing code that is not

making any functional difference to the code

fragment. For example variables declared and not

used anywhere in the program, increment or

decrement operation which doesn‟t make any

difference to either outcome of the method or may

not affect any calculation further etc.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 1 January to February 2016

ISSN: 2249-2615 http://www.ijettjournal.org Page 34

Figure 4.4: Metrics computation and Textual Analysis

The metric analysis finds the potential clones which

are described in Figure 4.4. The twelve method level

metrics are applied on to the source code to identify

these potential clones. Analysis of metrics gives the

understanding of the clones which are discovered.

These metric values are analyzed and compared with

the textual analysis. And clones will be finalized for

further processing.

The lower half of the screen displays the results. The

Source field specifies the files that system has

compared and number of lines matched by the Lines

field. Adjacent text area describes the details of the

matched portions of the code fragments.

For detecting the clones presented in the input files,

textual analysis is performed in the preprocessed

codes. The textual analysis finds 2 types of clones

such as type I and type II. It is presented in Figure

4.4.

Figure 4.5: Clone Detection Process

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 1 January to February 2016

ISSN: 2249-2615 http://www.ijettjournal.org Page 35

Finally, selecting one of the rows in the Source field

clones available in the source files are detected in the

efficient manner are displayed in the text area and the

final output is presented in Figure 4.5. These clones

identified through the process have to be analyzed

manually and confirm that it is a genuine code and

then the process of refactoring will start. And the

refactoring is a process that allows us to nullify the

negative effective of the code cloning.

Case Study

Consider the following program for a case study of

the proposed clone detection technique. The program

presented here is a part of a system which is the code

of free software available on the World Wide Web.

This is a part of a system which is developed for

supporting some mathematical calculations and

solutions for mathematical equation. To understand

where the normalization and other activities

happening we gave line numbers to the code.

Clone detection

The two programs were presented in the Appendix A.

The following code fragment shown in Figure 4.6

after concatenation and normalization.

public class TestFileOne {

 intp,q=1,r;

 double VALUE;

publicint factorial(int n){

if(n == 0){

return 1;

}else{

return n * factorial(n-1);

 }

 }

publicintgcdOne(int a, int b) {

while (b != 0) {

if (a > b) {

 a = a - b;

 } else {

 b = b - a;

 }

 }

return a;

 }

publicintmul(int a, int b){

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 1 January to February 2016

ISSN: 2249-2615 http://www.ijettjournal.org Page 36

int n = 0, p=0;

 p=p+q;

for(int i = 0; i < b; i++){

 n += a;

 }

return n;

 }

 publicint factorial1(int VALUE){

 for (p=1; p<=VALUE; p++)

 q = q*p;

 return q;

 }

 }

public class TestFileTwo {

publicint factorial2(int n){

if(n == 0){

return 1;

}else{

return n * factorial2(n-1);

 }

 }

publicintgcdTwo(int c, int d) {

while (d != 0) {

if (c > d) {

 c = c - d;

 } else {

 d = d - c;

 }

 }

return c;

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 1 January to February 2016

ISSN: 2249-2615 http://www.ijettjournal.org Page 37

 }

public double mulTwo(double a, long b){

double n = 0.0;

for(long i = 0l; i < b; i++)

 n += a;

return n;

 }

 }

Figure 4.6: Normalized Sample Code presented in Appendix A

In the process of file integration two files presented

in appendix-A, are concatenated and white spaces

and comments were removed. In program 1 line

numbers

2,4,6,8,11,13,15,17,19,23,34,36,38,40,42,45,49,51

are the blank lines and were deleted before

concatenation. When we look at program-2 of

appendix-A, line numbers 2,4,5,7,15,26,31 are blank

lines and were removed before concatenation. The

comments present in line numbers 9,10,12,48 of

program 1 and line number 8 of program 2 are

removed in the above pre-processed code fragment.

Pre-processing phase involves this file integration

and white space and comment removal. Above code

fragment is after preprocessing and will move to

normalization phase.

The process of normalization is to replace all the

identifiers with a common variable name. In this

example we used common variable „S‟ to replace all

the variables presented in the code fragment. The

normalization also involves removing the structure of

the program. For reader of the program convenience

we use tabs and spaces in a line. Normalization

removes this structure for textual comparisons. The

template conversion is another phase which is

associated with normalization. Template conversion

is to convert all language constructs into predefined

templates. Table 4.1 shows normalized and template

converted code of our example.

Table 4.1: Template conversion of sample plrograms

Code Normalized template

public class TestFileOne {

intp,q=1,r;

double VALUE;

public int factorial(int n){

if(n == 0){

return 1;

}else{

return n * factorial(n-1);

}

}

public intgcdOne(int a, int b) {

while (b != 0) {

if (a > b) {

a = a - b;

} else {

b = b - a;

}

}

return a;

}

ASP CLASS_NAME{

DAT S,S,S;

DAT S;

ASP DAT FUN_NAME(DAT S){

IF{

RETURN;

}ELSE{

RETURN REC_FUNCTION CALL;

}

}

ASP DAT FUN_NAME(DAT S, DAT S){

LOOP{

IF{

ASSIGNMENT STATEMENT;

}ELSE{

ASSIGNMENT STATEMENT;

}

}

RETURN;

}

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 1 January to February 2016

ISSN: 2249-2615 http://www.ijettjournal.org Page 38

public intmul(int a, int b){

int n = 0, p=0;

p=p+q;

for(int i = 0; i < b; i++){

n += a;

}

return n;

}

public int factorial1(int VALUE){

for (p=1; p<=VALUE; p++)

q = q*p;

return q;

}

}

public class TestFileTwo {

public int factorial2(int n){

if(n == 0){

return 1;

}else{

return n * factorial2(n-1);

}

}

public intgcdTwo(int c, int d) {

while (d != 0) {

if (c > d) {

c = c - d;

} else {

d = d - c;

}

}

return c;

}

public double mulTwo(double a, long b){

double n = 0.0;

for(long i = 0l; i < b; i++)

n += a;

return n;

}

}

ASP DAT FUN_NAME(DAT S,DAT S){

DAT S,S;

ASSIGNMENT STATEMENT;

LOOP

ASSIGNMENT STATEMENT;

}

RETURN;

}

ASP DAT FUN_NAME(DAT S){

LOOP

ASSIGNMENT STATEMENT;

RETURN;

}

}

ASP CLASS_NAME{

ASP DAT FUN_NAME(DAT S){

IF{

RETURN;

}ELSE{

RETURN REC FUNCTION CALL

}

}

ASP DAT FUN_NAME(DAT S, DAT S){

LOOP{

IF{

ASSIGNMENT STATEMENT;

}ELSE{

ASSIGNMENT STATEMENT;

}

}

RETURN;

}

ASP DAT FUN_NAME(DAT S,DAT S){

DAT S;

LOOP

ASSIGNMENT STATEMENT;

RETURN;

}

}

There are seven functions in the above code fragment

and they are normalized with variables and templates

created for each statement. Templates replaced with

original statements like access specifier with ASP,

name of the class with CLASS_NAME, variable

declaration with DAT S, name of the function with

FUN_NAME, conditional statement „if-else‟ with IF

and ELSE, „while‟ and „for‟ looping statements with

LOOP, return statements of the function with

RETURN, and all arithmetic statements with

ASSIGNMENT statements etc. The opening and

closing braces will be remains the same in converted

template also for each functional block.

The next phase is clone detection process. It involves

metric analysis and textual comparison. First metric

computations will be done for each method, and then

each of these templates will be divided into tokens

similar to the process that happens with a compiler

while compiling a program.

Metrics will be calculated for each method

individually. Sample metrics calculations are shown

for three methods as following

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 1 January to February 2016

ISSN: 2249-2615 http://www.ijettjournal.org Page 39

Table 4.2: Metric calculation for factorial method

Sl.

No.

Metrics Value

1. No. of lines of code 8

2. No. of local variables declared 0

3. No. of conditional statements 1

4. No. of looping statements 0

5. No. of arguments passed 1

6. No. of function calls n-1

7. No. of times function called 0

8 No. of return statements N

9 No. of inherited objects or methods 0

10 No. of virtual functions 0

11 No. of overridden functions 0

12 No. of overloading constructors 0

In Table 4.2 metric calculation for number of

function calls and number of return statements are

depending on the input number and the value of „n‟

will be replaced by that value accordingly at the time

of metric calculation.

Table 4.3: Metric calculation for gcdone method

Sl.

No.

Metrics Value

1. No. of lines of code 10

2. No. of local variables declared 0

3. No. of conditional statements 1

4. No. of looping statements 1

5. No. of arguments passed 2

6. No. of function calls 0

7. No. of times function called 0

8 No. of return statements 1

9 No. of inherited objects or methods 0

10 No. of virtual functions 0

11 No. of overridden functions 0

12 No. of overloading constructors 0

In Table 4.3 gcdone() function all metrics are clearly

calculated well before compilation of the program

unlike factorial method in the above calculation.

Table 4.4: Metric calculation for mul method

Sl.

No.

Metrics Value

1. No. of lines of code 8

2. No. of local variables declared 2

3. No. of conditional statements 0

4. No. of looping statements 1

5. No. of arguments passed 2

6. No. of function calls 0

7. No. of times function called 0

8 No. of return statements 1

9 No. of inherited objects or methods 0

10 No. of virtual functions 0

11 No. of overridden functions 0

12 No. of overloading constructors 0

Like this metric calculations will be done for all the

methods and will be analyzed by the system to

identify functional similarities. This analysis is done

to find type IV clones and returns them as clones. In

this example it returns factorial and factorial1

functions as clones.

Let us observe the final results of the method for the

given example.

Initial result screen shows as in the Figure 4.7. It

shows the beginning lines of the two programs

presented in the appendix –A and other line by line

clones are displayed.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 1 January to February 2016

ISSN: 2249-2615 http://www.ijettjournal.org Page 40

Figure 4.7: Initial results screen

When we scroll down and find the results for method level clones as we see in the example. In program1 factorial

method implemented using recursive function and in program2 it is exactly implemented as same in program1 and

represented as factorial2. It resembles code clone of type I and the result is shown in Figure 4.8.

Figure 4.8: Detected type I clones

The other clones detected were gcd One method of program1 and gcd Two method of program2 is similar but not

same. The variables presented in gcd One are named as „a‟ and „b‟, are replaced by „c‟ and „d‟ but other statements

are same. System cannot identify it through simple textual comparisons, but by normalization method our system

will be able to identify these clones. It resembles type II clones and results are as shown in Figure 4.9.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 1 January to February 2016

ISSN: 2249-2615 http://www.ijettjournal.org Page 41

Figure 4.9: Detected type II clones

The method mul in program1 and mulTwo in program is not similar. The variables passed to this method are

changed and their data types are also changed. The number of variables declared within the function is also changed,

but an additional variable declared is „p‟ and it has no functional value with in this function so, it can be considered

as a clone. This resembles type III clone and is shown in Figure 4.10.

Figure 4.10: Detected type III clones

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 1 January to February 2016

ISSN: 2249-2615 http://www.ijettjournal.org Page 42

In program1 factorial method is implemented by recursive function but in the same program another method named

as factorial1 is implemented using a looping structure. Though these two methods are implemented in two different

ways both are calculating factorial of a number only. So, we consider these as clones of the system. Our system

identifies these clones and resembles as type IV clones which is shown in Figure 4.11.

Figure 4.11: Detected type IV clones

Clone clustering

The identified code clones which are of different types will be grouped together to form clone clusters. These clone

clusters will be useful to analyze the detected clones from the files which we have given as input. These clusters are

stored in a text file and will be utilized to find the clones detected by the tool are actual clones are not. These

clusters are named as C1, C2, C3 and so on. Some of the clone clusters identified for this example are presented in

Figure 4.12.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 1 January to February 2016

ISSN: 2249-2615 http://www.ijettjournal.org Page 43

Figure 4.12 Clone Cluster representation

Refactoring

Finally refactoring is applied on the programs which

are given as inputs. We applied pull-upmethod, hence

we created a class named as InhClass. All three

methods that are identified as clones were pulled to

the parent class and these two classestestfileOne and

testfileTwo were made as inherited classes (child

classes) from the parent class. All the occurrences of

these three methods were replaced by function calls

to these methods in the parent class. Any changes

required to these methods require modifications at

one place now. All three occurrences of factorial(),

factorial1() and factorial2() methods were made as

function calls and one method with name factorial()

is presented in InhClass. Similarly gcdOne() and

gcdTwo() methods were replaced with function calls

and a method gcd() was created in parent class. It is

also same with the case of mul() and mulTwo()

methods. A method named mul() was created and

placed in parent class and these two methods are

replaced with function calls.

Performance Measure

There are many parameters in the code clone

literature to identify the efficiency of a clone

detection technique. For this research work we stick

to only precision and recall values to recognize the

efficiency of the technique. Some clone detection

techniques proved that they are efficient in either

precision or recall but not both. Our method is

assessed on both precision and recall values.

Clone detection result accuracy refers to a

combination of both precision and recall. Precision

denotes the probability that a randomly chosen

candidate clone group is relevant. Recall denotes the

probability that a relevant clone group, chosen from

the hypothetical set of all relevant clone groups, is

contained in a detection result.

found clones ofNumber Total

 correctly
 ,Pr

foundclonesofNumber
Pecision

ource codes in the sting clonesible exisber of posTotal num

correctfoundclonesofNumber
call

R ,Re

Let us examine the precision and recall values

observed in different popular clone detection

techniques.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 1 January to February 2016

ISSN: 2249-2615 http://www.ijettjournal.org Page 44

Table 4.5: precision and recall values of

popular clone detection techniques

In table 4.5 we can notice that CloneDr shows perfect

100% precision, which indicates the tool will not

produce any false positives in its clone detection

process. But the other side recall value is lowest, that

is 9%. That shows tool is not able to find all major

clones which are present in the system. CloneDr is a

tool which is developed on the basis of Abstract

syntax tree. CCFinder is a token based tool which

shows a good balance between precision and recall

values. Precision (72%) shows only 28% of false

positives and Recall (72%) shows it is finding most

of the original clones in the system. Suffix tree

method shows better results in terms of Recall value

(75%) when it compared with all other methods

includingCCFinder. But it shows the low Precision

value than cloneDr. The other two tools JPlag and

Moss are basically plagiarism tools which can also be

used as clone detection tools. Results of these two

tools are almost similar in recall value but a little

improvement in the precision value of JPlag. These

are the results we obtained on checking the tools with

an average size of software. Our method showed

better results of precision and recall values. Because

of identifying the functional clones, that is type-4

clones our methods precision value became 98% and

we were succeeded in getting highest value for recall.

The observations for CCFinder, CloneDr and Jplag

and Moss are almost similar to the experiment

conducted by Burd and Bailey [64]. Their experiment

is conducted on a system which is having large sized

Lines Of Code (LOC).

When we look at the above tools they are limited to

detect particular type of clones a token based tool

CCfinder was able to find clones of type I and type II

only. Anti-plagiarism tools Jplag and Moss are able

to show only type I clones. The other two tools which

are tree based CloneDr and Suffix tree method were

able to find type I, type II and type III. But our

method was able to find all four types of clones with

better precision and recall values.

The precision and recall of the proposed method will

evaluate the proposed system‟s efficiency. In the

process of proving the efficiency of the proposed

method following table compares the Precision and

recall values of the suffix tree method which is

known to be an efficient method in terms of precision

and recall values till now.

Table 4.6: Comparison table

Methods

Performance Measure

Precision Recall

Proposed method 98 96

Suffix Tree method 92 75

The following graph describes the comparison of

performance measure for Table 4.6. As the

performance of the method is considered in terms of

precision and recall only, following graph shows

precision and recall values of the method from 0 to

100 in percentage on Y-axis. There is no model

explicitly calculates all four types of clones so we

compared our method to suffix tree method, which is

used to find functional clones.

 CC

Finder

(type

1,2)

Clone

Dr (type

1,2,3)

Jplag

(type

1)

Moss

(type

1)

Suffix

Tree

metho

d

(type

1,2,3)

Our

meth

od

(type

1,2,3,

4)

 Precision 72 100 82 73 92 98

 Recall 72 9 12 10 75 96

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 1 January to February 2016

ISSN: 2249-2615 http://www.ijettjournal.org Page 45

Figure 4.13 : Comparison graph of Precision and Recall

(Precison and Recall of proposed and suffix tree methods on X-axis is plotted against Percentage of performance for

this precision and recall on Y-axis)

From the Figure 4.13, we observe that our proposed

method detects the clones available in the source files

in an efficient mannar. We compare the proposed

work with the already existing clone detection tool

which uses suffix tree method that will give less

precision and recall rate when compared to our

proposed method.

The precision and recall values are finalized for the

method from calculating precision and recall values

of the code segments of different sizes considered

and took the average of all. These values are shown

in Table 4.7

Table 4.7: Performance of the method for

different lines of code

Number

of Lines

of code

500 1000 5000 10000

Precision 98.7 98.3 98.5 98.2

Recall 96.6 96.4 96.5 96.3

As shown above in Table 4.7 the precision value for

the program which is about 500 lines of code is

obtained as 98.7 and is the highest in the table for the

minimum size program. If the size of the code is

1000 lines then it is 98.3. One can say about our

method that if the size is increased the precision

value is decreased but we got higher precision value

for the code with size 5000 lines as 98.5 which is

slightly higher than one with 1000 lines. Finally the

precision value of 10000 LOC sized code is 98.2. so

we conclude our method‟s precision value is not less

than 98.

The recall value is also obtained almost similar to the

precision value when it consider the difference

between various sizes of code. It is 96.6 if the size is

500 lines. The recall value for 1000 lines 96.4 and

5000 lines is 96.5. like precision recall value also

little less to 1000 lines and slight improvement to

5000 lines. When it comes to 10000 lines of code it

became 96.3, so we conclude that our method‟s recall

value will not be less than 96.

In addition our proposed approach supports

refactoring of the identified clones. This refactoring

can be done based on the clones that are discovered.

Two types of refactoring approaches are used in our

method. These two are extract and pullup methods.

Extract method allows us to replace the idetified

cloned lines of code to form as a method and make

0

10

20

30

40

50

60

70

80

90

100

Precision Recall

Proposed method

Suffix Tree method

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 6 Issue 1 January to February 2016

ISSN: 2249-2615 http://www.ijettjournal.org Page 46

calls each time it is repeated in the code. In Pullup

method if we have methods in child classes repeated,

these methods are pulled up to the parent class in the

inheritance relationship. These are two method level

refactoring techniques used in our approach.

Conclusion:

The working model of the system explains how to

detect clones. Case study proved that proposed

method is capable of detecting all types of clones.

Comparison graph states that the method works

efficiently.

Reference

[1] M. Fowlor. Refactoring: improving the design of existing

code. Addison Wesley, 1999.

[2] R. H. Page. http://www.refactoring.com/.

[3] MagielBruntink, Arie van Deursen,Remco van Engelen, and
Tom Tourwe, "On the Use of Clone Detection for Identifying

Crosscutting Concern Code", Ieee Transactions On Software

Engineering, Vol. 31, No. 10,pp. 804-818, October 2005
[4] Abouelhoda M.I., Kurtz S. and Ohlebusch E, "The enhanced

suffix array and its applications to genome analysis", In Proc.

Workshop on Algorithms in Bioinformatics, vol. 2452,pp.
449–463, Berlin, 2002

[5] Hamid Abdul Basit and Stan Jarzabek, "Detecting Higher-

level Similarity Patterns in Programs", European Software
Engineering Conference and ACM SIGSOFT Symposium on

the Foundations of Software Engineering, pp 1-10 Lisbon,

Sept. 2005
[6] Lingxiao Jiang, Zhendong Su and Edwin Chiu, “Context-

based detection of clone-related bugs”, Proceedings of the

6th joint meeting of the European software engineering

conference and the ACM SIGSOFT symposium on The

foundations of software engineering, pp. 55 – 64, New York,

USA, 2007.
[7] Chanchal Kumar Roy and James R Cordy, “A Survey on

Software Clone Detection Research”, Computer and

Information Science, Vol. 115, No. 541, pp. 115, 2007
[8] J Howard Johnson. Identifying Redundancy in Source Code

Using Fingerprints. In Proceeding of the 1993 Conference of

the Centre for Advanced Studies Conference (CASCON'93),
pp. 171-183, Toronto, Canada, October 1993.

[9] Zhenmin Li, Shan Lu, SuvdaMyagmar, and Yuanyuan Zhou.

CP-Miner: Finding Copy-Paste and Related Bugs in Large-
Scale Software Code. In IEEE Transactions on Software

Engineering, Vol. 32(3): 176-192, March 2006.

