
International Journal of P2P Network Trends and Technology (IJPTT) – Volume 5 Issue 1 January to February 2015

ISSN: 2249-2615 http://www.ijpttjournal.org Page 1

Towards an Adaptive High-performance

Execution of Scientific Applications in a

Dynamic Cloud Environment
Mohamed-K HUSSEIN

Tabuk University, Saudia Arabia.

Faculty of Computers and Informatics, Suez Canal University, Egypt.

Abstract— During the last decade, the needs for high-

performance computing for distributed scientific

applications have been addressed over multiple high-

performance environments including clusters and Grid

computing technologies. Recently, cloud computing

technology offers cheap and large-scale high-

performance computing environment. Infrastructure as

a Service cloud (IaaS) offers instant access to large-

scale computing resources. However, the performance

of the resources can dynamically varies according to

the changing load conditions on the resources. Further,

scientific applications require complex

communication/computation pattern, such as

optimized MPI for communication. For these reasons,

it is challenging to achieve high-performance in a

cloud environment.

This paper presents an initial framework towards

achieving adaptive high-performance execution for a

distributed scientific application over a private

dynamic cloud environment. The adaptation is

achieved by migrating the distributed components of

the benchmark application, which suffer performance

degradation, to a promising different resource. The

proposed framework contains a monitoring layer

which monitors the execution times of the running

application’s components. A decision layer issues the

migration decision considering the execution times

and the cost of the migration. Finally, the paper

presents the applicability of the proposed framework

on a private IaaS cloud managed by Eucalyptus.

Keywords— Scientific computing, Cloud computing,

high-performance computing, MPI applications,

Eucalyptus, Adaptive execution.

I. INTRODUCTION

Scientific applications are usually distributed large-

scale compute intensive application. As a result, it has

been executed using high-performance computing

resources to reduce the computational complexity into

a reasonable time, such as supercomputers [1].

However, such high-performance computing resources

are expensive. As a result, the Grid computing

technology has emerged to provide the scientists with

cheap high-performance and large-scale computing

resources through collaboration among multiple

academic organizations [2-6]. However, there could

be limitations between the hosting operating systems

and the software requirements of the developed

scientific applications. For example, scientific

applications may require specific tools and APIs that

have to be available during the runtime on the Grid’s

resources. For example, distributed scientific

applications with complex

communication/communication patterns during

runtime require message-passing tools, such as

parallel vector machines (PVM) and message passing

interface (MPI), on the Grid’s resources during the

runtime. However, the required tools and APIs may

not be available on the resources of the Grid where

applications are scheduled for execution [7].

Cloud computing has emerged as the cutting edge

IT technology to provide a flexible, on-demand elastic

computing infrastructure [8, 9]. The cloud computing

has gained its increasing popularity by the

advancement of the virtualization technology. The

virtualization creates different logical machines, called

virtual machines (VM) images, to share the same

hardware, and at the same time run isolated from each

other. The isolated VMs may include different running

operating systems (OS) and the user level software

installed on an operating system. The Virtual Machine

Monitor (VMM), called hypervisor, is a software layer

mediates the access of the VMs to the physical

resources, and allows the VMs to operate as if they

were running on different machines independently

[10]. As a result, a flexible control over the VM image

can be obtained which is hard to have such feature

with other high-performance infrastructure, such as

the Grid and Clusters [11]. Popular virtualization

hypervisors are VMware vSphere [12], XEN [13] and

KVM [14].

The cloud management is a software layer on top of

the virtual machine hypervisor VMM, in order to

controls the VMs. This layer accesses the entire

physical infrastructure, manages all the available

virtual resources and delivers the virtual resources as a

service over high-speed Internet. Cloud computing

technology brings the potential for providing high-

performance and the available supercomputing power

to the public free or for small charges. There is a

number of open source Cloud management layers,

such as Eucalyptus [15, 16], Nimbus [17] and

OpenNebula [18], which allow organizations and

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 5 Issue 1 January to February 2015

ISSN: 2249-2615 http://www.ijpttjournal.org Page 2

individuals to build private clouds to have full control

and to improve the utilization of the available

computational resources.

The promising features offered by Infrastructure as

a Service (IaaS) Cloud, such as on-demand access to

large-scale computing resources and elasticity, has

made a clear trend towards using the cloud in

scientific computing [7, 19-21]. Many research has

been conducted to study the performance of scientific

application on cloud environments, especially in

medical imaging, astronomy and physics [19].

However, to the best of our knowledge, none of these

studies has considered the dynamic nature of the cloud

where the executed application may suffer

performance degradation during runtime because of

the changing load conditions on the allocated

resources.

This paper presents an initial design to a framework

for an adaptive execution of distributed scientific

applications on a dynamic cloud environment. The

adaptive execution is achieved by terminating and

checkpointing the distributed component of the

application, which suffer performance degradation,

and restarting a new instance on a promising available

resource. A similar framework was designed on a Grid

environment [22]. The framework is adopted for

adaptive execution on a cloud environment, including

cloud support for redistribution of the checkpointing

files, resources monitoring, resource allocation and

restarting the distributed components of the executed

application on a different node.

The remainder of this paper is organised as follows.

Section 2 presents the related work on cloud

computing and experiences in executing scientific

applications in cloud environments as well as

adaptation in the cloud. Section 3 presents the

proposed adaptive framework for executing a

scientific application on a private cloud environment.

Section 4 describes the proposed cloud environment,

the experimental setup, and the experimental results.

Finally, conclusions and future work are given in

Section 5.

II. BACKGROUND

Several research projects have been conducted to

study the performance of scientific applications on

cloud environments, especially in medical imaging [7],

astronomy [20] and physics [21]. In [21], an analysis

of the feasibility of executing a distributed multi-

physics coupled models application on a private cloud

environment is conducted. The communication pattern

is employed using MPI and Open-MX as optimized

runtime tools for communication. The performance

analysis has shown that assigning multiple cores per

VM can achieve a slight better execution times

performance than execution times achieved using a

standalone machine. Other research projects, such as

Science Cloud [19] and Future Grid [20], have been

conducted to execute scientific application on a cloud

environment. Further, in [23], an evaluation of the

impact of Xen on MPI distributed applications on a

private cloud is conducted.

In [19], a framework has been developed for

executing MPI scientific applications on a Cloud

environment. The framework achieved high-

performance by making the application elastic over

the compute resources, i.e. increasing the number of

instances of the components of the application

whenever a performance degradation is discovered.

This approach achieves the adaptation by load

balancing the workload of the whole application over

the available compute resources. Our proposed

approach depends on discovering the compute

resources which causes the degradation of the

performance and migrating the components of the

application to compute resources with less load

conditions. The results have shown that the overhead

of the communication is small and the adaptation is

feasible. In [24], a mechanism has been presented for

executing multithread OpenMP applications on a

cloud environment. The proposed mechanism

achieves the adaptation in terms of controlling the

virtual machines (VMs), i.e increasing/decreasing the

number of CPUs and amount of assigned memory to

each VM, according to the number of threads in

execution. This approach focuses on the dynamic

changing requirement of the application during

runtime. However, our proposed approach focuses on

distributed iterative application. In this type of

application, the response time for each iteration are

approximately the same.

Many different approaches have targeted adaptation

of server-based applications on cloud environment

[25-27]. These mechanisms focus only on the

unpredictable changing conditions of the workloads

during runtime. They handle the degradation of the

performance by increasing the number of the virtual

machines which host the application components, and

by load balancing the increasing workloads on the

replicated virtual machines instances. Our approach is

different by focusing in the adaptation of the long-

running distributed scientific application where these

applications are designed to execute on a specific

number of compute resources, and cannot explore

elasticity using replication mechanism.

III. THE PROPOSED ADAPTIVE FRAMEWORK

This section starts with a detailed description of the

benchmark application used in the study, then a

presentation of the cloud architecture used for

executing the application. Finally a detailed

description of the proposed adaptive framework.

A. The Benchmark Application Description

The benchmark application used in this study is the

Multi-physics coupled model application [21]. The

importance of the coupled model application comes

from the outstanding advantage of simulating complex

scientific phenomena with an advanced accuracy in

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 5 Issue 1 January to February 2015

ISSN: 2249-2615 http://www.ijpttjournal.org Page 3

different areas, such as climate, space weather, solid

rockets, fluid structure interaction, heart disease and

cancer studies [28]. Coupling together different

models of individual systems, which affect the system

of interest, provides an accurate simulation for

phenomena under study [22]. These types of

application are large-scale, long running which would

require high-performance execution environment and

computation time in order of weeks if not months to

produce the results. In computational terms, coupled

models can be viewed as distributed component-based

applications in which each individual model becomes

a software component. In the general coupling

framework, reported in [1, 9], for example, each

individual model embodies three phases of operation,

namely initialization, iteration and termination, as

shown in Figure 1. The models are synchronized via

exchange of information in a series of put() and get()

calls to the run-time architecture during each iteration.

For each message transfer, the sender model executes

put() with a suitable data structure, and the receiver

model receives the communicated data by executing a

corresponding get(). The data sent between the models

is termed coupling data. Each individual model may

act at a different length or time scale, or focus on a

distinct underlying physical phenomenon.

Each model repeatedly perform one round of get()s,

then do some work based on the received coupling

data, then perform one round of put()s. A single cycle

of this iteration is known as a minor cycle and is

equivalent to one time-step in the underlying iterative

model. But, different scientific models are allowed to

iterate at different rates and transformer models are

then required in order to reconcile these rates. For

example, if there are two models coupled together,

and one model executes n rounds of put()s for every

round of get()s in the second model, an intermediate

n-for-1 transformer model is required to perform the

necessary reconciliation [21]. An n-for-1 transformer

thus performs n minor cycles during which it performs

n rounds of get()s before performing one round of

put()s. A 1-for-n transformer performs n minor cycles

during which it performs one get() group followed by

n put() groups. The resulting cycle of the entire

coupled model is termed a major cycle. For example,

the HybridMD coupled model is an interesting

modelling and simulating complex fluids that handles

molecular dynamics (MD) coupled to computational

fluid dynamics (CFD) within a single simulation. The

main goal is to study fluid flow over a surface [6]. The

interaction of fluid molecules with the surface is

modelled atomistically using classical molecular

dynamics, while the fluid bulk is modelled using a

continuum method. Each model tackles a separate

physical region of the system. The data exchange

between models provides the boundary conditions for

each region (e.g. temperature and pressure).

Considering the interaction between the

hydrodynamics and the specific molecular processes

near the surface clarifies the properties of these

physical systems and addresses key problems, such as

how hydrodynamics effects influence molecular

interactions at interfaces, at lipid bilayer membranes

and within individual macromolecules or assemblies

of them. The HybridMD coupled model consists of

two models (CFD and MD) and two transformers, as

shown in Figure 2Figure 2. MD iterates at three times

the frequency of CFD. Transformer1 is a 1-for-3

transformer that is used to reconcile the

communication between CFD and MD. Transformer2

is a 3-for-1 transformer that reconciles the

communication between MD and CFD. One major

cycle of the entire coupled model involves three minor

cycles of the MD model and one minor cycle of the

CFD model.

The architecture of the benchmark application has

two main advantages for adaptive execution in a cloud

environment using migration. First, it is easy to

monitor the execution performance through measuring

the response time for each timestep. The average

response time gives a good indication of performance

degradation, it increases more than a specified

threshold if the load on the compute node increases.

Second, it is easy to checkpoint the execution progress

at the end of each timestep. Hence, the distributed

component can restart the execution on a different

compute node from the checkpoint file.

MD

1-for-3

Input: Total_timestep, curr_timestep
Output: solution
//Initialization phase
{start MPI communication }
//start iterations
Loop
 get_coupled_data()
 {main timestep computation}
 Put_coupled_data()
{terminate MPI communication}
//termination phase

Figure 1. The structure of distributed coupled model application.

Figure 2. Data flow between the component models for the HybridMD
coupled model.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 5 Issue 1 January to February 2015

ISSN: 2249-2615 http://www.ijpttjournal.org Page 4

B. The Private Cloud Infrastructure

Eucalyptus is an open source software which

implements Infrastructure as a service (IaaS) Cloud

[15]. The IaaS infrastructure allows the end user to

flexibly execute distributed scientific applications over

the allocated resources by employing parallel runtimes

over the accessed VMs images. The main advantage

of Eucalyptus is that it is compatible with commercial

cloud products such as Amazon EC2 and S3 [15]. This

compatibility enables to run a scientific application on

a private cloud using Eucalyptus and a public cloud

using Amazon without modification in execution

framework or the application. Eucalyptus architecture

consists of a number of components, namely Cloud

Controller, Node Controller, Cluster Controller,

Storage Controller, and Walrus, as shown in Figure 3.

The Cloud Controller (CLC) is responsible for

managing the available virtual resources, such as

Servers, network and storage. The Node Controller

(NC) runs on each physical machine (PM), and

controls the available virtual machines. The Cluster

Controller (CC) collects information on the installed

virtual machines and schedules the VMs for execution

on the NC. For data storage service, the Storage

Controller (SC) which manages storage block volumes

by communicating between NC and CC. Also, Walrus

is a file-based storage service for the VMs images and

users data [16].

On each physical machine Xen is used as a VMM

hypervisor to create the virtual machine of a desired

configuration. Xen is a popular open source software

for VMM which is used to obtain high performance of

multi-cores physical machines [13]. Several research

has been conducted to study the performance impact

of Xen on MPI applications [21, 23]. These research

has proved that Xen can be used to bring higher

performance especially when several cores are

assigned to single virtual machine. OpenMPI is used

as the MPI implementation. Further, in the proposed

cloud infrastructure, Open-MX is used to reduce the

high latency of MPI communication over Ethernet

networks using TCP [29].

Figure 3. A private Cloud infrastructure using Eucalyptus.

Figure 4. The Proposed adaptive high-performance Execution framework.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 5 Issue 1 January to February 2015

ISSN: 2249-2615 http://www.ijpttjournal.org Page 5

C. The Proposed adaptive High-performance

Execution framework

Figure 4 shows the overall architecture of the

proposed framework. The framework is adopted from

an architecture for high performance execution of

distributed scientific application on a grid

environment [22]. The framework achieves adaptive

performance through feedback control through three

main layers.

The first layer is the high-performance control of

the whole application (HPC App) which consists of

three main components, namely communicator,

predictor, and compute node information (CN Info).

The communicator interacts with the HPC

Components. The predictor is mainly a decision layer

based on the average response time for each

component of the application and the current load on

the compute node as a measure of the execution

progress. Once the predictor discover a performance

degradation of the application, it issues a migration

decision. The communicator sends a migration

decision to HPC component to stop execution,

checkpoint the progress and redeploy the distributed

components of the application on the other available

compute nodes.

The high-performance of each distributed

components (HPC Component) is a software wrapper

for each component. Its main responsibilities are

checkpointing whenever it is necessary, especially

when a migration decision is issued. Further, HPC

component handles the MPI communication between

the distributed components. Finally, it restarts the

migrated component from the checkpoint file.

The loader are responsible for starting the

components for run when the application starts, or

restarting a component on a new compute node when

a migration decision is issued. Further, the loader

transfer the checkpoint files to the desired compute

node.

The framework is deployed on the Eucalyptus. On

each compute node a virtual machine where the each

loader and a distributed component of the application

along with the HPC Component are deployed. The

HPC App is deployed on another compute node. The

migration decision is based on the average response

time for each component, , and the

remaining number of iterations, . The

migration decision is issued using the following

Equation.

The threshold value is used to control the migration

decision. The threshold value is set taking into account

the cost of the checkpointing, checkpointcost, and

restarting the communication, commcost, as well as

the expected response time on the new deployment

configuration, as shown in the following Equation.

IV. EXPERIMENTAL SETUP AND EVALUATION

This section evaluates applicability and feasibility

of the proposed adaptive execution of distributed

framework using the distributed benchmark

application described in Section A.

The experiments are conducted using four physical

machines, each machine has i7 core Intel 2.2 GHz

processor and 32GB memory. The virtualization layer

is based on Xen hypervisor version 4.3. The VMs are

deployed using Eucalyptus version 4. Each node runs

Ubuntu version 12 operating system. OpenMPI

version 1.5 along with Open-MX version 1.4 are used

as MPI. 1 Gigabit Ethernet network fabric is used for

networking. On Each compute node, a virtual machine

is deployed and assigned 4 CPUs and 16 GB memory.

TABLE 1.

THE DEPLOYMENT OF THE ADAPTIVE FRAMEWORK ON

THE CLOUD RESOURCES.

Compute

Node

Number

deployment

1 HPC APP + HPC

Components(transformers)

2 HPC Component(CFD

model)

3 HPC Component(MD model)

4 No deployment

An initial deployment of each distributed

component is set on the resources of the set private

cloud infrastructure, as shown in Table 1. Figure 5

shows the execution performance of the MD model on

the deployment configuration shown in Table 1. As

shown in the figure, after timestep 120 of the

execution of the MD model, the load on compute node

3 is increased by running several instances of a matrix

multiplication program. After timestep 170, the

distributed component of the MD model managed to

stop its execution, checkpoint its progress and restart

execution at compute node 4.

Figure 6 shows the overhead cost of the migration

in seconds. The major overhead is in restarting the

MPI communication over the new deployment. The

overhead is relatively large. However, with the actual

long-running scientific distributed application, this

overhead can be tolerated for in the large scale

execution time..

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 5 Issue 1 January to February 2015

ISSN: 2249-2615 http://www.ijpttjournal.org Page 6

V. CONCLUSIONS AND FUTURE WORK

This paper has presented the initial design of a

framework towards achieving an adaptive

performance execution for a distributed scientific MPI

application over a private dynamic Cloud environment.

The adaptation is based on migrating the distributed

components of the application, which suffer

performance degradation, to a promising different

resource. The proposed framework contains a

monitoring layer which monitors the execution times

of the running application’s components. A decision

layer issues the migration decision considering the

execution times and the cost of the migration. Finally,

the evaluation using a distributed scientific coupled

model application presents the feasibility of the

proposed adaptive framework on a private Cloud by

Eucalyptus Cloud.

In this paper, the threshold value is set statically

based on the experience of the overhead cost of the

migration and restarting the MPI communication. The

future work will focus on the dynamic placement of

the threshold value. Further, a simple and accurate

predictor is required to predict the response times of

the remaining timesteps based on load conditions of

the allocated resources.

REFERENCES

[1] 1. Jha, S., et al., Understanding Scientific Applications for

Cloud Environments, in Cloud Computing. 2011, John Wiley

& Sons, Inc. p. 345-371.
[2] 2. Foster, I. and C. Kesselman, The Grid 2: Blueprint for a

New Computing Infrastructure. 2003: Morgan Kaufmann

Publishers Inc.
[3] 3. Coveney, P.V., et al., Scientific Grid Computing: The

First Generation. Computing in Science and Engg., 2005.

7(5): p. 24-32.
[4] 4. A grid-enabled web service for low-resolution crystal

structure refinement. Acta Crystallographica Section D

Biological Crystallography, 2012. 68(3): p. 261.
[5] 5. Pordes, R., et al., New science on the Open Science Grid.

Journal of Physics: Conference Series, 2008. 125(1): p.

012070.
[6] 6. Pordes, R., t.O.S.G.E. Board, and J. Weichel, Analysis

of the current use, benefit, and value of the Open Science

Grid. Journal of Physics: Conference Series, 2010. 219(6): p.
062024.

[7] 7. Vecchiola, C., S. Pandey, and R. Buyya, High-

Performance Cloud Computing: A View of Scientific
Applications, in Proceedings of the 2009 10th International

Symposium on Pervasive Systems, Algorithms, and

Networks. 2009, IEEE Computer Society. p. 4-16.
[8] 8. Armbrust, M., et al., A view of cloud computing.

Commun. ACM, 2010. 53(4): p. 50-58.

[9] 9. Buyya, R., et al., Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering computing

as the 5th utility. Future Gener. Comput. Syst., 2009. 25(6): p.

599-616.
[10] 10. Uhlig, R., et al., Intel Virtualization Technology.

Computer, 2005. 38(5): p. 48-56.

[11] 11. Ekanayake, J. and G. Fox, High Performance Parallel
Computing with Clouds and Cloud Technologies, in Cloud

Computing, D. Avresky, et al., Editors. 2010, Springer Berlin

Heidelberg. p. 20-38.
[12] 12. Burd, S.D., et al. Virtual Computing Laboratories Using

VMware Lab Manager. in System Sciences (HICSS), 2011

44th Hawaii International Conference on. 2011.
[13] 13. Barham, P., et al., Xen and the art of virtualization.

SIGOPS Oper. Syst. Rev., 2003. 37(5): p. 164-177.

[14] 14. Childers, B., Virtualization shootout: VMware server vs.
VirutalBox vs. KVM. Linux J., 2009. 2009(187): p. 12.

[15] 15. Nurmi, D., et al., The Eucalyptus Open-Source Cloud-

Computing System, in Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster Computing

and the Grid. 2009, IEEE Computer Society. p. 124-131.

[16] 16. Kijsipongse, E. and S. Vannarat, Autonomic resource
provisioning in rocks clusters using Eucalyptus cloud

computing, in Proceedings of the International Conference on
Management of Emergent Digital EcoSystems. 2010, ACM:

Bangkok, Thailand. p. 61-66.

[17] 17. Tudoran, R., et al., A performance evaluation of Azure
and Nimbus clouds for scientific applications, in Proceedings

of the 2nd International Workshop on Cloud Computing

Platforms. 2012, ACM: Bern, Switzerland. p. 1-6.
[18] 18. Sempolinski, P. and D. Thain, A Comparison and

Critique of Eucalyptus, OpenNebula and Nimbus, in

Proceedings of the 2010 IEEE Second International
Conference on Cloud Computing Technology and Science.

2010, IEEE Computer Society. p. 417-426.

[19] 19. Raveendran, A., T. Bicer, and G. Agrawal. A
Framework for Elastic Execution of Existing MPI Programs.

in Parallel and Distributed Processing Workshops and Phd

Forum (IPDPSW), 2011 IEEE International Symposium on.
2011.

[20] 20. Deelman, E., et al., The cost of doing science on the

cloud: the Montage example, in Proceedings of the 2008
ACM/IEEE conference on Supercomputing. 2008, IEEE

Press: Austin, Texas. p. 1-12.

[21] 21. HUSSEIN, M.-K. and M.-H. MOUSA, High-
performance Execution of Scientific Multi-Physics Coupled

Applications in a Private Cloud. International Journal of

Figure 5. The response times of the MD model in milliseconds).

Figure 6. The overhead cost of the migration.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 5 Issue 1 January to February 2015

ISSN: 2249-2615 http://www.ijpttjournal.org Page 7

Advanced Research in Computer Science and Software

Engineering, 2014. 4(2): p. 11-16.
[22] 22. Hussein, M., et al., Adaptive performance control for

distributed scientific coupled models, in Proceedings of the

21st annual international conference on Supercomputing.
2007, ACM: Seattle, Washington. p. 274-283.

[23] 23. Youseff, L., et al., Evaluating the Performance Impact of

Xen on MPI and Process Execution For HPC Systems, in
Proceedings of the 2nd International Workshop on

Virtualization Technology in Distributed Computing. 2006,

IEEE Computer Society. p. 1.
[24] 24. Galante, G. and L.C.E. Bona, Supporting Elasticity in

OpenMP Applications, in Proceedings of the 2014 22nd

Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing. 2014, IEEE Computer

Society. p. 188-195.

[25] 25. Chieu, T.C., et al., Dynamic Scaling of Web
Applications in a Virtualized Cloud Computing Environment,

in Proceedings of the 2009 IEEE International Conference on

e-Business Engineering. 2009, IEEE Computer Society. p.
281-286.

[26] 26. Galante, G. and L.C.E. de Bona. A Survey on Cloud

Computing Elasticity. in Utility and Cloud Computing
(UCC), 2012 IEEE Fifth International Conference on. 2012.

[27] 27. Roy, N., A. Dubey, and A. Gokhale, Efficient

Autoscaling in the Cloud Using Predictive Models for
Workload Forecasting, in Proceedings of the 2011 IEEE 4th

International Conference on Cloud Computing. 2011, IEEE

Computer Society. p. 500-507.
[28] 28. Murugavel, S.S., S.S. Vadhiyar, and R.S. Nanjundiah,

Adaptive Executions of Multi-Physics Coupled Applications

on Batch Grids. J. Grid Comput., 2011. 9(4): p. 455-478.
[29] 29. Goglin, B., High-performance message-passing over

generic Ethernet hardware with Open-MX. Parallel Comput.,

2011. 37(2): p. 85-100.

