
International Journal of P2P Network Trends and Technology (IJPTT) – Volume 4 Issue 5 September to October 2014

ISSN: 2249-2615 http://www.ijpttjournal.org Page 29

Design and Implementation of Agile Security Architecture

Model
M.Upendra Kumar

 Associate Professor CSE MGIT Hyderabad India

Abstract In this Paper, it addresses Design and

Implementation of proposed model for Agile Modelled

Layered Security Architectures for Security

Requirements. We had validated on case study Next

Generation Secure Web Engineering Applications,

using Agile Modelling for Web Services, Web 2.0

Services Authentication and Authorization.

Keywords — Design, Implementation, Agile

Modelling, Security Architectures

I. INTRODUCTION

1 PROPOSED MODEL FOR AGILE LAYERED

SECURITY ARCHITECTURE DESIGN

 For any Software Development, Designing

Software Architecture is the important significant

work. Designing Architecture is based on

Architectural Design Rules. In MDA, Architectural

Design Rules are formed in the form of models only.

This design is done using design patterns concepts and

System is de3veloped through Agile Processing. With

this proposed model, for any software system security,

the requirements are refined in the iterations to follow.

 In the existing system, there is a link between

Model Driven Development and Software

Architecture, but no specification is made how the

architectural rules are used to develop the architecture.

More over there are no security measurements used

for the system development. In proposed system,

using architectural design rules architecture is

developed as Model Driven Architecture. For this

architecture security is introduces using patterns and it

is developed using Agile Processing techniques.

Model Driven Architecture is a three layer process

containing of

 CIM (Computation-Independent Model): As the

name suggests it focus on the required

functionalities of the system but not on the

computation process that is needed. This is

designed by system analysts and its main key

elements are Use Cases. Here the analysis is done.

 PIM (Platform- Independent Model): The

essential parts of the system and the essential

behaviours of the system are focused but not

about the platform to be used. For a CIM there is

a PIM given.

 PSM (Platform-Specific Model): Using the

transformations the behaviours are modelled in

this layer using one specific platform. For a single

PIM there can be multiple PSM’s exists. The

main modeling concept lies in this layer so there

is a technique to design this layer.

Design of PSM

 PSM is designed in three design approaches based

on the levels of the system. Those are

 Architectural Design: The gross level designing is

done3 i.e. at Entire system level.

 Mechanistic Design: For each requirement, use

case collaborations are given and designing at this

collaboration level is the mechanistic design.

 Detailed Design: As the name implies, individual

class or subsystem or component design is

explained in detailed design.

Transformations: There are transformations used

between the PIM and PSM layers. These

transformations are:

 Model Transformations: To transform model to

code this is used. First mappings are done to

transform from PIM to PSM.

 Meta model Transformations: Meta model is

defined as model-on-model.

 Design Patterns Transformations: Using design

pattern identification the mapping is done.

Design
 To identify the design pattern that is appropriate to

the system development, the concept of Design Motif

Identification Multilayer approach (DEMIMA) is used

as design phase in proposed model. Design pattern is

defined as problem solving approaches for recurring,

recursive problems. It is defined with four parts: Name,

Purpose, Solution and Consequences (Pros and Cons).

A design pattern will have motive, structure,

implementation, sample code, applications,

collaborations etc. to identify. DEMIMA follows a

three layered approach to identify a pattern that is

perfectly matching the requirement and this pattern is

unique.

 In the First layer, the source code is taken and

based in its structure is identified which will be a

model of Unified Model Language (UML)

language. Here, Program Model is defined as set

of Entities (Classes and Interfaces) and as set of

Elements (Attributes, Operations and Relations)

 In Second layer the maintainers choose a Design

Pattern from structure whose motif is embedded

by architecture. Here, idioms are defined as

higher level of abstraction. Idioms are low-level

patterns specific to some program languages and

implementation of particular characteristics of

classes and their relationships.

 In last layer, maintainers deduce intent and

motivation of overall system based on chosen

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 4 Issue 5 September to October 2014

ISSN: 2249-2615 http://www.ijpttjournal.org Page 30

design pattern. That is, describes model of design

motif with same language used for idiom model.

Implementation

 The development of architecture is based on agile

process. The agile process is one of the software

processing techniques containing the same phases as

waterfall model (or) Rational Unified Process (RUP)

(Inception, Elaboration, Construction, Transition) but

implemented in iterative manner. The phases are:

1.1 AGILE ANALYSIS

 Micro cycle (Program running in incremental

model) requirements are analyzed in two activities:

Prototype definition (template or rough definition for

given requirement), this comes across CIM layer of

MDA since it involves no computation process) and

Object analysis (rough objects are identified from

prototype and analysis is done, this comes under PIM

layer of MDA since behavior of objects are known but

not concentrating on their implementation)

1.2 AGILE DESIGN

 The PSM layer of MDA is designed using agile

design of three levels as Architectural Design,

Mechanistic Design and Detailed Design.

1.3 AGILE TESTING

 Test cases and test workflows are given as Unit

Test (White Box), Integration test (Gray box) and

Validations (Black box). Test Driven Development is

used as agile methodology to process step.

 In this proposed model, Security is provided to

system at architectural level. This is because of the

identification of proper design pattern or design motif

for construction of MDA. Because of this

identification there will be no confusion or overlap of

design criteria for any requirement that comes to

architecture as design rule.

 When a comparison is made between existing and

proposed systems, there were benefits with MDA as

Portability (because of PIM), Reusability (because of

PSM) and isolation from technology churn (moves or

turns to latest technology easily). Initial security

measures are defined. Since models are used to

develop architecture, it is to understand and use by

architects and developers. With design pattern based

designing security is provided at architectural level

only so if any requirement is tested at this level that is

verified by its rules so saying a refinement to

requirements. Therefore in future scope, security level

must be increased as well as improvement to

DEMIMA process is done since as of now it is able to

identify few design patterns only.

1.4 METHODOLOGY FOR PREDECESSOR

ACTIVITIES OF

 AGILE METHODOLOGY

 Figure 4.1 provides Sequence diagram for

Predecessor activities of Agile Methodology for

Security. Important objects specifying significant

tasks are: Pre spiral Plan, Stakeholder requirements,

and Development Environment. Steps involved

iteratively across various iterations are creating a

Schedule, Creating a team model, planning for reuse,

planning for Risk (dependability) reduction,

Specifying logical architecture, Perform initial safety

and reliability analysis, and finally link this report

with requirements. After invoking of Stakeholder

requirements phase the significant steps involved are:

Define the product vision, Find and outline

stakeholder requirements, Detail the stake holder

requirements, Review stake holder requirements, and

finally relate the requirements with development

environment. Eventually significant steps in

Development Environment phase are: Tailor the

process, Installation of development tools, Configure

the development tools, Initialize the development tools

and Launch the development tools.

Appendix 1 figure 1 provides Sequence diagram for

Predecessor activities of an Agile Methodology.

1.5 METHODOLOGY FOR AGILE

IMPLEMENTATION

 Figure 4.2 provides Sequence diagram for Agile

Security Implementation. The significant objects or

phases for Secure Agile Implementation are: Agile

analysis has important steps like prototypes base line

is figured out and its repestive objects and their

internal interactions among other objects are analyzed.

This is followed by phase Agile Design based on its

obtained agile anaysis specification so that

optimization of usage of design patterns is done. The

steps involved in agile analysis are architectural rules

can be applied for optimization at gross level.

Mechanistic rules are applied for optimization at

system level, detailed rules are applied for system at

primitive level. Now this Agile design needs to be

tested by phase Agile testing. Steps involved in Agile

testing are unit testing, integration testing and

validation testing. Appendix 1 figure 2 provides

Sequence diagram for Predecessor activities of an

Agile Methodology.

Design of Agile Methodologies for Security

 Figure 3 provides Class diagram Design for MDA

authentication using Executable UML. The significant

classes here are: User and Administrator,

Authenticator, Authorizer and Security. Initially for

accessing information user needs to be authenticated

by providing his login credentials like username and

password. Authenticator authenticates the user by

checking username with associated password and

knows whether the user is the real claimant. Based on

the check result authenticator allows the user for his

available authorization. Authorizer checks for the type

of user like administrator and their corresponding

access rights. Authorizer has the privilege to restrict

access to the information for any user based upon the

situation. Username and password is encrypted so that

other authorized users who had earlier authorized may

not recognize this user name and password. It is the

responsibility of the security class which generates a

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 4 Issue 5 September to October 2014

ISSN: 2249-2615 http://www.ijpttjournal.org Page 31

key and chooses an appropriate algorithm for

encrypting the data.

Fig Class diagram Design for MDA authentication

using Executable UML

 Figure 4 provides Class Diagram Design of Agile

Methodologies with Security Activities. The important

classes are Algorithm, Integration,

SecurityAgileMethods, SecurityActivity, ART

(Agility Reduction Tolerance) etc. The sequence of

steps involved are extraction of security activity,

calculate agility degree, integration of agility and

security, activity process algorithm, ART. Recursively

and iteratively proposed agile security model is

applied as an algorithm as how much integration of

security and agility done.

Fig 4 Class Diagram Design of Agile Methodologies

with Security Activities

2 AGILE SECURITY PATTERNS

 The proposed agile security model is extended by

proposing the following agile security patterns like

Dependency Inversion Principle, Interface Segregation

Principle, Separation through Delegation, and

Separation through Multiple Inheritances.

2.1 DEPENDENCY-INVERSION PRINCIPLE

 This principle can be used when one class wants to

send a message to another class. To illustrate this

principle, as an example considered the figure 5 (Agile

Security Design for Dependency Inversion) using

classes like Button, ButtonServer and lamp. Here

Button class and lamp class has this policy. Button

class after receiving a message called poll can sense

an external event. This affects the lamp class. Lamp

class will respond to messages turn on and turn off

appropriately. In a nutshell button class gets a message

called poll and sends turn on or turn off message to

lamp class. Initially there is a clear dependency

between button class on lamp class. This implies that

any changes to lamp affect the button. This in-turn is a

violation to dependency inversion principle. Button

now is holding a relationship called association with

button server class, which is an interface so that the

button class can turn on or turn off the lamp class.

Button server interface is implemented by lamp. Now

the scenario is dependency is done by the lamp instead

of it being depended. This eventually gives flexibility

for button for controlling any class which implements

interface button server.

Fig 5: Agile Security Design for Dependency

Inversion

2.2 INTERFACE SEGREGATION PRINCIPLE

 To illustrate this principle, as an example

considered the figure 6 which provides Agile Security

Design for Interface Pollution. The important classes

here are Timer, TimerClient (Interface), Door,

TimedDoor. Door Class can be locked or unlocked

there by giving information whether it is closed or

opened respectively. Door is implemented as an

interface, so that it supports various implementations.

TimedDoor is a specialization of door which raises an

alarm if the door is kept open for a long period of time,

hence TimedDoor can establish a message

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 4 Issue 5 September to October 2014

ISSN: 2249-2615 http://www.ijpttjournal.org Page 32

communication with Timer. For getting the duration

of time we require to register with timer, open door

forcibly, so now TimedDoor should inherit from

TimerClient although its two step process. So now

TimerClient receives a message called timeout. This

clearly shows that door clearly depends on

TimerClient. This approach reduces complexity and

redundancy.

Fig 6 Agile Security Design for Interface Pollution

2.3 SEPARATION THROUGH DELEGATION

 To illustrate this principle, as an example

considered the figure 7 which provides Agile Security

Design for Separation through delegation. This is an

enhancement solution to the earlier interface pollution

principle. TimerClient can create an object and there

by delegates it to the TimedDoor. Whenever

TimeoutRequest has to be registered a

DoorTimerAdapter is created by TimedDoor and it is

registered by the Timer. This solution is very general

purpose but because of delegation it requires small

quantity of run time dynamic memory.

Fig 7 Agile Security Design for Separation through

delegation

2.4 SEPARATION THROUGH MULTIPLE

INHERITANCES
 To illustrate this principle, as an example

considered the figure 8 which provides Agile Security

Design for separation through Multiple Inheritance.

TimedDoor gets inheritance by both TimerClient and

TimedDoor. Here parent class does not depend on

child classes. Using separate interfaces and multiple

inheritance this solution provides usage of a specific

object using separate interfaces.

. Fig 8 Agile Security Design for separation

through Multiple Inheritance

3 WEB 2.0 SERVICES SECURITY DESIGN FOR

NGSWEA USING

 AGILE MODELING

 This implementation is for designing secured web

2.0 AJAX Web Services. For web 2.0 AJAX

architecture access to the web server is minimized

because the AJAX engine in the web 2.0 supporting

browser will handle the request to and response from

web server. Regarding security issues first the web

application needs to be secured for web services

interface design. Next restriction of access to web

services for specific parties needs to be designed.

Figure 9 provides Initial Page of the

mygoogle_search.html. This implementation is about

creating a search control using web 2.0 third party

services. Java Script provides the browser security

with usage of features from Google Search API.

Initially OnLoad function loads the Google Search. To

start with a variable is assigned to search control.

Fig 9 Initial Page of the mygoogle_search.html

 Figure 10 provides Encryption of data using

JavaScript (MD5 algorithm). This implementation

creates MD5 Hashing and Encryption. This is useful

for protecting the data and restricting unauthorized

access.

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 4 Issue 5 September to October 2014

ISSN: 2249-2615 http://www.ijpttjournal.org Page 33

 Fig 10.Encryption of data using JavaScript (MD5

algorithm)

 Figure 11 provides design of Web 2.0 services

SSL using Agile Modeling. The modules used for

Web 2.0 services authentication using Visual Studio

are Add Security Policy, include customized

authentication (using X.539 certificates), create a

client etc. Secure Socket layer (SSL) provides a

mechanism for sending SOAP messages through

secure tunnel. WS-Security provides SOAP message

protection. The advantages here are simple agile

security design and ease of reusability of code,

correctness in operation and also provide security

against sniffing and confidentiality. Testing is done

for correctness of the proposed agile security model.

The layered approach components used at message

layer are WS-Security, SOAP, and SSL/TLS.

Implementation is done as additional four classes:

Factory classes (SSLServerSocketFactory and

SSLFactory), Socket classes (SSLServerSocket and

SSLSocket). Based on SSL client gets and sends a

chain of certificates with a signature. Client needs to

do additional configuration to the specified four

classes. Figure 12 provides execution screenshot for

the key generation of Web 2.0 services SSL

implementation. Figure 13 provides the package

diagram of Web 2.0 services SSL. Figure 14 provides

execution screen shot of this application where Users

Gives Username and password for their authentication.

Figure 15 shows execution screen shot of, on entering

valid username and password the company quote will

be displayed. Figure 16 shows execution screenshot of,

on entering wrong username or password the error is

displayed violating authentication.

Fig 11 Class Diagram of Web 2.0 services SSL by

Agile Modeling

Fig 12: Key generation of Web 2.0 Services SSL

application

International Journal of P2P Network Trends and Technology (IJPTT) – Volume 4 Issue 5 September to October 2014

ISSN: 2249-2615 http://www.ijpttjournal.org Page 34

Fig 13: Package diagram of the web 2.0 services

authentication by Agile Modeling

Fig 14: Users Giving Username and password

Fig 15: On entering valid username and password the

company quote will be displayed

Fig 16 on entering wrong username or password the

error is displayed violating authentication

4 SUMMARY AND CONCLUSION

 In this paper, based on the earlier paper of

theoretical analysis, an agile security model is

proposed which is a layered one having phases like

agile analysis, agile design and agile testing with

propose of four security patterns. This model is

initially validated based on earlier paper basic web

services secure agile design for Web 2.0 services

authentication using proposed agile security model.

Next paper provides agile security privacy

requirements, web 2.0 services privacy design and

application of proposed agile security model for

secure web engineering.

REFERENCES

1. I. Lazar, B. Parv, S. Motogna, I.-G. Czibula, C.-L. Lazar,

“An Agile MDA approach for Executable UML Structured

Activities”, Studia Univ. Bases, vol. LII, No. 2, 2007, PP.
101-114.

2. Orit Hazzan, Yeal Dubinsky, “Agile Software Engineering”,

Springer London, ISBN 978-1-84800-198-5, DOI
10.1007/978-1-84800-199-2, 2008, PP. 6.

3. Tore Dyba, Torgeir Dingsoyr, “Empirical studies of agile

software development: A systematic review”, Elsevier,
Science Direct, 2008, PP. 1-27.

4. Jeff Younker,”Foundations of Agile Python Development”,

Apress Publishers, 2008, PP. 12
5. Barbara Russo, Maro Scotto, Alberto Silliti, “Agile

Technologies in Open Source Development” IGI Global
publishers USA 2010, PP. 11- 24

6. Staurt Wray,”How Pair Programming Really Works”, IEEE

Software, January/February 2010 PP. 50-55.
7. Jo E.Hannay, Erik Arisholm, Harald Engvik, and Dag

I.K.Sjoberg, “Effects of Personality on Pair Programming”,

IEEE Transactions on Software Engineering, Vol 36, No.1,
Jan/Feb 2010, PP. 61 – 80.

8. Laurie Williams “What Agile Teams Think of Agile

Principles” Communications of the ACM Vol.55 No:4,
April,2012. PP. 71-76.

9. Bartlomies Gamel and Iwona Skalne,” Model driven

architectures and classification of business rules modeling

languages”, IEEE International conference, ISBN 978-83-
608-51-4, PP. 949 – 953.

10. Emrah Asan, ”Agile and Collaborative Systems Engineering”,

Ph.D. Thesis, School of Informatics, Middle East Technical

University, January 2014, PP. 1-126.

