
International Journal of P2P Network Trends and Technology (IJPTT) - Volume 1 Issue 2 September to October 2011

ISSN: 2249-2615 http://www.ijpttjournal.org Page 24

Timetable scheduling using graph

coloring
Cauvery N K

1

1Associate Prof, Department of CSE, RVCE,

Bangalore - 560059, Karnataka, India.

Abstract
The problem of constructing an automated system for

timetabling is a particularly well known one. Timetabling is a

common example of a scheduling problem and can manifest

itself in several different forms; the particular form of

timetable required is specific to the environment or

organization in which it is needed. Many programs exist for

this task but they perform well only in particular isolated

environment. With the help of graph coloring, it is proposed

to develop a general system that can cope with the ever

changing requirements of large educational institutions.

Timetabling problem is a NP-hard problem. many

combinatorial problems (optimization problems) are NP-

hard. It is generally believed that NP-hard problems cannot

be solved to optimality within times which are polynomial

bounded functions of input size. Therefore there is much

interest in heuristic algorithms which can find near optimal

solutions within reasonable running time. One of the most

studied NP-hard problems is the “graph coloring problem”.

Graph coloring has numerous applications in scheduling and

other practical problem; “timetabling” is one of them. One of

the heuristic approaches to solve graph coloring is “Ant

algorithm” [1].

Keywords: Graph coloring, Ant colony optimization,

Pheremone trails.

1. Introduction

Timetable Problem represents an important class of

optimization problem in Operations Research. It is

considered as one of the most difficult problems faced

by universities and colleges today. The problem can be

defined as allocation of given resources (teachers,

classrooms) to objects (courses) being placed in space

time satisfying all university constraints and optimizing

utilization of existing facilities such that a set of

desirable objectives are satisfied [1]. Basically,

university timetable problem exists in two forms viz.,

course and exam timetable formats. Here focus is only

on course timetable problem. The university course

timetable requires several slots and with different

categories such as lectures, tutorials and practical

sessions, which fits within a week and repeats for

whole semester. Each classroom has different

capacities which make assignment of courses to

classrooms complicated. Furthermore, it is not only

enough to schedule course in classroom with higher

capacity than the number of enrolled students, since

this can still lead to inefficient utilization of classrooms

which can cause difficulties for teachers and students.

The automation of timetable problem is thus an

important task as it saves lot of man-hours to

institutions and provides optimal solutions that can

boost productivity, quality of education and services.

However, large-scale timetables such as university

timetables may need many hours of work spent by

qualified person or team in order to produce high

quality timetables with optimal constraint satisfaction.

2. Graph coloring

In graph theory, graph coloring is a special case of

graph labeling; it is an assignment of labels

traditionally called "colors" to elements of a graph,

subject to certain constraints. In its simplest form, it is

a way of coloring the vertices of a graph such that no

two adjacent vertices share the same color; this is

called a vertex coloring [2]. Similarly, an edge coloring

assigns a color to each edge so that no two adjacent

edges share the same color, and a face coloring of a

planar graph assigns a color to each face or region so

that no two faces that share a boundary have the same

color. Vertex coloring is the starting point of the

subject, and other coloring problems can be

transformed into a vertex version. For example, an

edge coloring of a graph is just a vertex coloring of its

line graph, and a face coloring of a planar graph is just

a vertex coloring of its planar dual. However, non-

vertex coloring problems are often stated and studied

as is. That is partly for perspective, and partly because

some problems are best studied in non-vertex form, as

for instance is edge coloring.

The convention of using colors originates from

coloring the countries of a map, where each face is

literally colored. This was generalized to coloring the

faces of a graph embedded in the plane. By planar

duality it became coloring the vertices, and in this form

it generalizes to all graphs. In mathematical and

computer representations it is typical to use the first

few positive or nonnegative integers as the "colors". In

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 1 Issue 2 September to October 2011

ISSN: 2249-2615 http://www.ijpttjournal.org Page 25

general one can use any finite set as the "color set".

The nature of the coloring problem depends on the

number of colors but not on what they are.

Graph coloring enjoys many practical applications as

well as theoretical challenges. Different limitations can

also be set on the graph, or on the way a color is

assigned, or even on the color itself. It has even

reached popularity with the general public in the form

of the popular number puzzle Sudoku. Graph coloring

is still a very active field of research.

2.1 Definition and Terminology of Graph Coloring

The Graph Coloring Problem (GCP) is one of the most

studied NP-hard problems in graph’s theory,

completeness theory and operational research [2]. Its

importance is justified by its diverse and interesting

applications such as timetabling and resource

assignment.

Definition: A graph k-coloring which can be stated as

follows: given an undirected graph G with a set of

vertices V, and a set of edges E, a k-coloring of G

consists of affecting to each vertex of V a color such

that any two adjacent vertices have different colors.

Formally, a k-colorings of G=(V,E) can be stated as a

function C from V to a set of colors K such that |K|=k

and C(u) ≠ C(v) whenever E contain an edge (u,v) for

any two vertices u and v of V (assignment approach).

The graph k-coloring can also be stated as a partition of

V into k stables called color sets S1… Sk where every

vertex in Si has the same color i. The minimal number

of colors k for which a k-coloring exists is called the

chromatic number of G and is denoted by χ (G). An

optimal coloring is one that uses exactly χ(G) colors.

The GCP is the optimization problem that consists of

finding an optimal coloring for a given graph G. Since

the GCP is NP complete, it is necessary to use

heuristics methods to solve it.

Vertex coloring: When used without any qualification,

a coloring of a graph is almost always a proper vertex

coloring, namely a labeling of the graph’s vertices with

colors such that no two vertices sharing the same edge

have the same color. Since a vertex with a loop could

never be properly colored, it is understood that graphs

in this context are loopless. The terminology of using

colors for vertex labels goes back to map coloring.

Labels like red and blue are only used when the

number of is small, and normally it is understood that

the labels are drawn from the integers {1, 2, 3,…}.

Coloring using at most k colors is called a (proper) k-

coloring. The smallest number of colors needed to

color a graph G is called its chromatic number, χ(G). A

graph that can be assigned a (proper) k-coloring is k-

colorable, and it is k-chromatic if its chromatic number

is exactly k. A subset of vertices assigned to the same

color is called a color class, every such class forms an

independent set. Thus, a k-coloring is the same as a

partition of the vertex set into k independent sets, and

the terms k-partite and k-colorable have the same

meaning.

3. Ant Colony Optimization

 Ant Colony Optimization (ACO) is a metaheuristic

approach for solving hard combinatorial optimization

problems [1]. It’s an evolutionary method inspired

from the foraging behavior of real ants that enables

them to find shortest paths between a food source and

their nest. This method differs from other evolutionary

methods such as, Genetic Algorithms (GA) and Scatter

Search (SS) by the fact that at each stage of the

solution construction, it takes into account information

resulting from the preceding iterations and the

desirability of each element that can be added to the

current solution. In an ACO algorithm, a complete

graph vertices are the solution components associated

to the problem. It is called “construction graph”.

Moreover, in an ACO algorithm, simple agents called

artificial ants communicate indirectly to find good

solutions for the optimization problem. Informally, the

behavior of ants in ACO algorithms can be summarized

as follows: The ants of a colony concurrently and

independently move through adjacent states of the

problem on the construction graph, applying a

stochastic local decision. While moving, ants

incrementally build solutions to the optimization

problem. Typically, good quality solutions emerge as

the result of the collective interaction of the ants, which

is obtained via indirect communication (pheromone

trails). During the construction of the solution, ants

evaluate the partial solution and deposit pheromone

trails on components or connections it used (online

update). This information will guide the future ants

search. To move on the construction graph, ants will

make decision based on pheromone trails (Γ) and an

information specific to the problem (η). In many cases

η, is the cost, or an estimate of the cost, these values

are used by the ant’s heuristic rule to make

probabilistic decisions on how to move on the

construction graph. The probabilities involved in this

case are commonly called transition probabilities [3].

The goal in combinatory optimization is not to

reproduce the biological model but to be inspired

usefully. Thus, besides ant’s activities, an ACO

algorithm includes two additional procedures:

pheromone trail evaporation and daemon actions.

Pheromone evaporation is the process by means of

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 1 Issue 2 September to October 2011

ISSN: 2249-2615 http://www.ijpttjournal.org Page 26

which the pheromone trail intensity on the components

decreases over time. Formally, pheromone evaporation

is a useful form of forgetting, favoring the exploration

of new search space areas. Daemon actions can be used

to implement centralized actions that cannot be

performed by an ant. For example, the daemon can

observe the path (solution) found by each ant of the

colony and deposit extra pheromone (additional

pheromone) on the components used by the ant that

built the best solution. Pheromone updates performed

by the daemon are called off-line pheromone updates.

Improvement Methods: Ant Colony System (ACS)

for the GCP has two strategies of construction and

improvement [4][5]. In construction strategy, the self-

adaptation phase uses a problem specific constructive

method to create new solutions. These two constructive

methods take into account the different updates of

pheromone trails and thus the heuristic information

relative to the problem. Indeed, two decisions have to

be taken at each step of a constructive method. The

first is about the choice of the next vertex to color and

the second is about the color to assign to the chosen

vertex. In an ordinary constructive method, these

decisions are made in a myopic way by completing the

current partial solution at best. In addition, ACO

algorithms perform best when hybrid with local search

algorithms, (which is a particular form of daemon

action). In the improvement strategy, at each iteration

of the algorithm, the best solution found is improved

using Tabu Search and these locally optimized

solutions are used in pheromone updates.

Constructive methods are largely used in

combinatory optimization. Their efficiency is justified

by their short execution time and their facility of

implementation. Constructive methods are also used to

find an upper bound for the chromatic number. A

constructive method adapted to the GCP run over the

vertices set sequentially, and assigns to each vertex the

smallest possible color (colors: 1, 2..., k) until

obtaining a complete solution. In construction strategy

of ACS, the self-adaptation phase uses a constructive

method specific to the considered problem. This

method will take into account the different updates of

pheromone and the heuristic information of the

problem. Two of the famous methods are, Recursive

Largest First (RLF) and Degree of Saturation

(DSATUR), which are considered among the best

resolution methods for the GCP.

Update of Pheromone trails: Values of pheromone

are associated to pairs of nonadjacent vertices having

the same colour [5][6]. Formally, the value Γ
k
 (vi , vj)

corresponds to the trace left by a given ant "k" having

assigned the same colour to the vertices vi and vj (1≤ i

≠ j≤n). Therefore, at the end of a cycle of the

algorithm, Γ(vi ,vj) is the value of pheromone

associated to the couple (vi , vj) for all colourings (ants)

which coloured vi and vj with the same colour. Let ΔΓ

(vi , vj) denotes values of pheromone added to Γ(vi , vj)

by all the ants during a cycle. The values Γ(vi , vj) are

stored in a square matrix denoted “si” of order n and

initialized like this:

 Γ .. (1)

Where E is the Edge set that contains all the edges of

the graph.

Stage by stage update: for each ant k, with pheromone

decay ρ, the updated matrix is:

∀(vi ,vj)∈Sk : Γ (vi, vj) =(1-ρ)* Γ(vi, vj)+ρ*Γ0

 eqn. (2)

Evaporation is carried out according to this rule:

Γ (vi, vj) = (1-ρ) * Γ (vi, vj) eqn.(3)

Where: Sk is the solution built by the ant “k”..

Heuristic Information: For the first strategy, heuristic

information is defined according to the used

constructive method. If an ant is implemented as RLF,

heuristic information η(vi, vj) relative to the choice of

the vertex vj starting from the current vertex vi is

defined in three possible ways:

 η(vi, vj)= degB (vj). η(vi, vj)= | A | - degA (vj). η(vi, vj)=

degA∪B (vj). B eqn.(4)

However, if an ant behaves like DSATUR, heuristic

information is defined simply as the degree of

saturation of the vertex in question.

 η(vi,vj) = DSAT (vj) eqn. (5)

Transition Rule: ACS improves AS algorithm by

giving more importance to information collected by

previous ants with respect to exploration of the search

space [7]. This is ACS improves AS algorithm by

giving more importance to information collected by

previous ants with respect to exploration of the search

space. This is acheaved using two mechanisms. First, a

strong elitist strategy is used to update pheromone trails

eqn(2), second, ants choose the next vertex “v” to

move to (colour) applying a pseudo- random

proportional rule: With probability q0 they move to the

vertex j for which the product between pheromone trail

and heuristic information is maximum, that is, v= arg

max{(Γij)
α
(t) . (ηij)

β
(t)}.

Candidate List: The candidate list is an intelligent

strategy used mainly when the size of the instance

(order of the graph) is very large. This technique

consists in not considering the totality of the

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 1 Issue 2 September to October 2011

ISSN: 2249-2615 http://www.ijpttjournal.org Page 27

neighborhood but rather a subset of this (for example,

containing the best solutions), which can lead search

towards promising areas. In addition, this allows

accelerating the solutions construction. Inspiration of

other techniques as in Tabu Search, where candidate’s

lists are used, could be useful for the development of

this strategy efficiently in ACS.

Construction Strategy: In this strategy, each ant is

initially put on a vertex of the construction graph

randomly, or according to a well-defined criterion (the

vertex having the maximum degree) [8][9]. Pheromone

values on all connections are initialized to Γo. Each ant

repeatedly construct a feasible solution while inserting

into each stage a component, couple (vertex, color), in

the current partial solution until obtaining a complete

solution according to the constructive method

implementing the ant (RLF or DSATUR). This

construction is done by repeating the following stages:

(i) The next vertex to be coloured is chosen by

observing the rule of transition (*). It is selected

among the vertices of the candidate list if this one

is considered.

(ii) The vertex chosen in the stage (i) is put in the ant

Tabu list, this list is used to save the path

(solution) built by the ant. Tabu list is also used to

make sure that a vertex already coloured will not

be coloured a second time, and consequently to

guarantee the feasibility of the built solution.

(iii) This stage consists of decreasing the pheromone

values associated to pairs of vertices having the

same colour (the vertex that has been just added to

the stable in construction); this to avoid fast

convergence to the same solution. This update

replaces the phase of evaporation in the algorithm.

As long as the ant did not build a complete

solution yet, it repeats the phases of construction.

After all the ants established their solutions, the

best one is saved and compared with that of the

preceding iteration for a possible improvement of

the objective function. After this, the daemon adds

extra pheromone to only the best solution found in

the preceding stage, and precisely to all

connections that constitute it. If the same solution

appears in several iterations of the algorithm

(stagnation), then, the daemon decides to make

evaporation. If the stopping criterion (a maximum

number of iterations defined preliminary, or a

maximum execution time) is not filled, the

algorithm is started again. Give below the pseudo

code of ACS algorithm, construction strategy, for

the GCP.

Begin ACS1

Initialization ; (Pheromone and parameters)

 While (stop criterion not satisfied) do

 Position ants on starting vertices

 Repeat

 For (each ant) do

Choose a vertex to color by applying the

 transition rule (*);

 Tabu list Update;

 Update Online stage by stage of pheromone

 trails

 End for

 Until (each ant construct a solution)

 Select the best solution ;

 Pheromone Offline update of the best solution

 Evaporation if necessary

 End While

End ACS1

Improvement Strategy

The strategy of improvement can be summarized as

follows: Pheromone values are initialized to a value Γ0

on all connections. Each ant is assigned a starting

vertex chosen randomly or by a well-defined criterion.

Staring from an initial coloring (obtained either in a

random way or by a constructive method), each ant

tries to improve it by recoloring (change the color)

some vertices in conflict. Improvement is carried out

by choosing the next vertex to recolor as the vertex

having a maximum number of violations among

vertices of the candidate list. If such a vertex does not

exist (current solution is feasible), a vertex is selected

arbitrarily. If Iter_Max (a certain fixed number of

iteration) is not reached yet, the process of

improvement is repeated again. After this, Tabu Search

makes an improvement to the best solution found in the

preceding stage (online delayed update). The daemon

adds extra pheromone (Offline update) to the best

solution and precisely all connections that compose it

according to the equation (4). If for a situation of

stagnation, the same solution appears during several

iterations of the algorithm, the daemon decides to make

evaporation using the equation (5). If the stop criterion

(a maximum number of iterations defined preliminary,

or a maximum execution time) is not satisfied, the

algorithm is started again. The pseudo code of ACS

improvement strategy for the GCP [3].

Begin ACS2

Initialization ; (Pheromone et parameters)

While (stop criterion not satisfied) Do

 Position ants on starting vertices;

 For (each ant)

 Generate an initial colouring for the graph G.

 Repeat

 Choose the next vertex to recolour among

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 1 Issue 2 September to October 2011

ISSN: 2249-2615 http://www.ijpttjournal.org Page 28

 vertices of the condidate list and according to

 the transition rule (*).

 Change its colour so that conflicts are

 minimised.

 Until (Iter_Max reached)

 Online delayed Update of pheromone trails;

 End For

 Select the best solution;

 Improvement of the best solution (TS);

 Evaporation if necessary;

 End While

End ACS2

The various constraints that need to be satisfied are:

 No resources (teacher or rooms) should be

assigned to different events at the same time

 Events of the same semester must not be assigned

at the same time frame.

 There are maximum number of times periods per

day, which must not exceed.

 There should not be any type of conflicting

allocation of resources between departments.

 There should not have any hard assumption about

the resources and events.

 Must be easy for handling temporary modification.

 Functional Requirements:

 The Administrator should be allowed to enter the

details about courses, lecturers, exam, and room

along with various criteria for allocating them.

 The system should have some means of alerting

the Administrator if sufficient amount of input is

not provided.

 The hard constraints like how much hours should

be held for a course, must meet at any

circumstances.

 The requirement of each event may vary and that

must be taken into consideration. Such as there,

needs a single lecturer for theory classes but for

lab it may vary depending upon the requirement.

 The inter-department conflict of resources should

be taken into consideration.

 System should be flexible enough to do temporary

modification in case resources are not available.

For example, in case some faculty has not come it

must provide interfaces to allocate those classes to

available faculty.

The software is developed as a client server

application. Administrator handles the server.

Administrator inputs departmental information, lecturer

information, examination information and other

information into the server, server stores these

information in the database, using this information the

conflict graph generator module generates a conflict

graph, the generated conflict graph is then colored by

graph coloring module, this module uses ant algorithm

to color the graph. Interval Assignment module assigns

corresponding time slots for abstract colors, the end of

this process is a colored graph. When an End Viewer,

student or lecturer requests for timetable report, server

generates the report required by End Viewer by passing

the colored graph to the Report Generation module,

server then transfers report to the End Viewer. Server

authenticates End Viewers, this process is depicted in

system architecture of Fig 1.

Timetable Generator

Conflict Graph

Generator

Coloring Graph

using Ant

algorithm

Data Entry

Stored Data

Report Generator

Colored graph

Reports

Interval

Assignment

Fig 1 : System Architecture

4. Conclusion

“Timetable Scheduling” is scheduling and course

planning software for any institution running under

university. It provides an efficient scheduling of

courses and events where complex combinations of

resources must be assigned efficiently to timetables.

The application is fast, flexible, user friendly and has

extremely large capacity. It has a very rich set of

efficient optimization and interactive approach to

satisfy the user according to their varying needs.

This software works smoothly in face of scheduling

difficulties with which institutions are often confronted

when creating their timetables. The technical side of

“Timetable Scheduling” has been implemented with the

help of “Graph coloring using Ant Algorithm” in

simple and self-contained manner as much possible.

The application is extremely versatile and robust.

“Timetable Scheduling” software is an excellent choice

for those institutions that find their current application

outdated, restricted or inflexible to the changing

demands of their increased scheduling requirements.

The system makes use of very efficient data structure

which can increase randomly it does not have the size

limit of events.

International Journal of P2P Network Trends and Technology (IJPTT) - Volume 1 Issue 2 September to October 2011

ISSN: 2249-2615 http://www.ijpttjournal.org Page 29

5. Limitations

 Following are the limitations of the project:

 More concern is given to efficient scheduling

than the time required generating, but a trade-off

between these two is always maintained.

 It does not handle more than one client at a time,

but it can be easily extended by application of

multi-thread.

 It works as a centralized system and does not

support decentralized architecture.

 Temporary modification is limited to server, but

it is always possible to enhance it for client

module.

6. Further Enhancement

The application developed can be further enhanced to

include following features:

 It can be extended to support the scheduling of

university exams and inter-college test.

 The scheduling technique can be easily

enhanced to support soft constraints, like

preferred number of classes a lecturer wants to

take.

 In case of decentralized administrator, this

application can be further enhanced.

 It can be enhanced to support more than one

client at a time

 Client could be enhanced to do temporary

modification.

References

[1] SangHyuck Ahn, SeungGwan Lee, TaeChoong Chung,

“Modified Ant Colony System for Coloring Graphs”,

ICICS-FCM 2003 15-18 December 2003.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=129278

7

[2] Spyros Kazarlis, Vassilios Petridis and Pavlina Fragkou,

“Solving University Timetabling Problems Using Advanced

Genetic Algorithms”, International Journal, Vol. 4.2009, p no.

260-279.

[3] Ehsan Salari and Kourosh Eshghi,“An ACO Algorithm for the

Graph Coloring Problem”, International Journal Contemp.

Math. Sciences, Vol. 3, 2008, no. 6, 293 – 304.

[4] Malika Bessedik, Rafik Laib, Aissa Boulmerka et Habiba Drias,

“Ant Colony System for Graph Coloring Problem”. J. Op.

Res. Society, pp. 290-300 (2004)

[5] D. Costa and Hertz A. “Ant can colour graphs”, J. Op. Res.

Society, pp. 295-305 (1997)

[6] E.K.Burke, D.G.Elliman, R.Weare, “A University Timetabling

System based on Graph Colouring and Constraint

Manipulation”.

[8] Dorigo M, Maniezzo V, Colorni A, “The ant

system:Optimization by a colony of cooperation

agents”,IEEE Transaction of Systems, Man and Cybernetics-

Part B, vol 26, no.2 pp. 29-41(1996).

[9] Malika Bessedik, Rafik Laib,“Ant Colony System for Graph

Coloring Problem”, International Conference on

Computational Intelligence for Modeling, 2005.

First Author Biographies should be limited to one paragraph
consisting of the following: sequentially ordered list of
degrees, including years achieved; sequentially ordered
places of employ concluding with current employment;
association with any official journals or conferences; major
professional and/or academic achievements, i.e., best paper
awards, research grants, etc.; any publication information
(number of papers and titles of books published); current
research interests; association with any professional
associations. Do not specify email address here.

